6-3-1. 地盤破壊 (現況地盤)

(1) 限界盛土高

各解析箇所における施工時の許容安全率 Fsa=1.10 を満たす盛土高(以下限界盛土高 Hen と称す)を繰り返し計算で算出し、図-6.3.1 に示し以下にまとめた。

① 校舎側 SW-4:

限界盛土高 HED=2.34m

 \rightarrow HED=2. 30m

② グランド側 Br-2, SW-9: 限界盛土高 HED=2.23~2.29m → HED=2.20m

(連絡道路側 SW-9 における限界盛土高は、上記グランド側 SW-9 と同様に HED=2.20m とした)

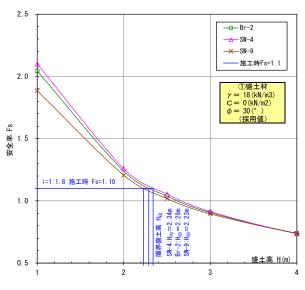


図-6.3.1 限界盛土高

(2) 施工時の安定解析結果

施工時(必要盛土厚 Hrea)の圧密沈下解析から、その安定性を確認する要す結果となった。

必要盛土厚 Hreq の立上げは段階盛土とし、第1段階を限界盛土高 HED とし、放置(圧密度 U=80%以上)により強度増加後に、第2段階目の必要盛土厚 Hreq 立上げ時の安定を確認し、表-6.3.2 と図-6.3.2 に示し下表にまとめた。

_	_,			
	位 置	解析箇所	施工時U=80% 安全率	判定
	校舎側	SW-4	0. 911	<1.10 NG
	グランド側	Br-2	1. 198	>1.10 OK
	クノンド側	SW-9	1.022	<1.10 NG
	連絡道路側	SW-9	1.056	<1.10 NG

表-6.3.1 施工時の安定解析結果のまとめ

- ①グランド側 Br-2 は、施工時はOKとなった(その後供用時では対策工が必要となり、対策工を検討した)。
- ②その他の検討箇所は、限界盛土施工後の放置期間による強度増加を見込んでも必要盛土高まで 盛り立てが不可能で、対策工が必要となった。

施行時の対策工を要す箇所が多いが、一部不要な箇所もある。この場合は供用時の安定性を確認 し対策工を選定する必要がある。

表-6.3.2 限界盛土高と圧密後の必要盛土高(施工時)の安定性検討結果一覧表

			盛土諸元			解析	f条件					限界原	盛土高HED(対する沈下解	析結果					HED	(U≧80) でx	必要盛土厚亞	盛立直後の安	定解析
ブロ	リック区分	完成	必要	限界	盛立	盛立	許容 残留	許容	即時	圧密	最終										安全率	医(施工時Fsa	n=1.10)	
٤	解析位置	盛土高 Hp(m)	盛土厚 Hreq(m)	盛土高 HED(m)		期間 Tm日)	残留 沈下量 Sra(cm)	放置 期間 Ta(日)	沈下量 Ss(cm)	沈下量 Sc(cm)		沈下量 S80(cm)	残留 沈下量 Sr80(cm)	放置期間 T80(日)	地層 記号	沈下量 ⊿Sf(cm)	m	圧密度 ⊿ UED(%)	Pc-Po (k N/m2)	U=80% Fs1	最大抑止力 Tmax (kN/m)	U=85% Fs2	最大抑止力 Tmax(kN/m)	
		3. 2	4. 4	2. 3	5	46			1.59	86. 017	87. 6	70. 4	17. 2	153 (107)	AU-c	4. 9	0.3	0.80	39. 7	0. 911	61	0. 919	59	0.961
校															AU-p1	35. 5	0. 45	0. 80	17. 2					
舎	SW=4	L													AU-p2		0. 35	0. 90	38. 9		q=4.4mはHED			
側															AM-p1	12. 9	0. 45	0. 69	18. 8	Hre	q=4.4m/よHED)2. 3m+U=10	0%で盛立不	可能
															AM-c	1.4	0. 25	1. 00	165. 0					
					_																			
		2. 0	3. 0	2. 2	5	44			1.5	74. 1	75. 6	60.8	14. 8	74 (30)	AU-c	2. 9	0.3	0.86	41. 3	1. 198	0			
												64. 5	11.1	136 (92)	AU-p1	34. 4	0. 45	0.86	22. 0	——Н	req=3.0m(はH	ED2. 2m+U8	- 0%で盛立可能	能 ———
	Br-											(↑U=85%) I		AU-p2	13. 4	0. 45	0. 69	19. 6				1	
グ															AM-p2	6. 7	0.3	0. 83	73. 8					
ラ															AM-c	1. 9	0. 25	0. 55	190. 2					
ード		0.0	0.0	0.0	-	44			0.4	F0 4	00.0	F0 0	11.0	40	1411	0.5	0.0	0.07	44 4	1 000	00	1 005	17	1 075
側		2. 8	3. 8	2. 2	5	44			3. 4	59. 4	62. 8	50. 9	11. 9	43 盛立期間内		3. 5	0.3	0. 97	41. 1	1. 022	20	1. 035	17	1.075
	CW (AU-p1	32. 9	0. 45	0. 78	18. 2	11	. 0 0 /-/ 1150	0 0 11 00	() - + +	T 44
	SW-9														AU-p2	9. 7	0. 35	0.88	38. 8		q=3.8m(はHED q=3.8m(はHED			
															AM-p2	2. 2	0.3	0. 76	16. 2	III C	H-0. OIIII & IILL	. ZIII 1 0100		J HC

	施.	工時Fsa=	1. 10
Fs2 _{U80}	: 盛土厚Hreq2に対するU= 80%時の安全率	OK	: U=80%, Fs≧1.10
Fs2 _{U85}	: 盛土厚Hreq2に対するU= 85%時の安全率	NG	: U=80%, U=85%, Fs < 1.10
Fs2 _{U100}	: 盛土厚Hreq2に対するU=100%時の安全率	OUT	: U=100%, Fs<1.10
Tmax	: Fsa=1.10を満たす最大抑止力(kN/m)		

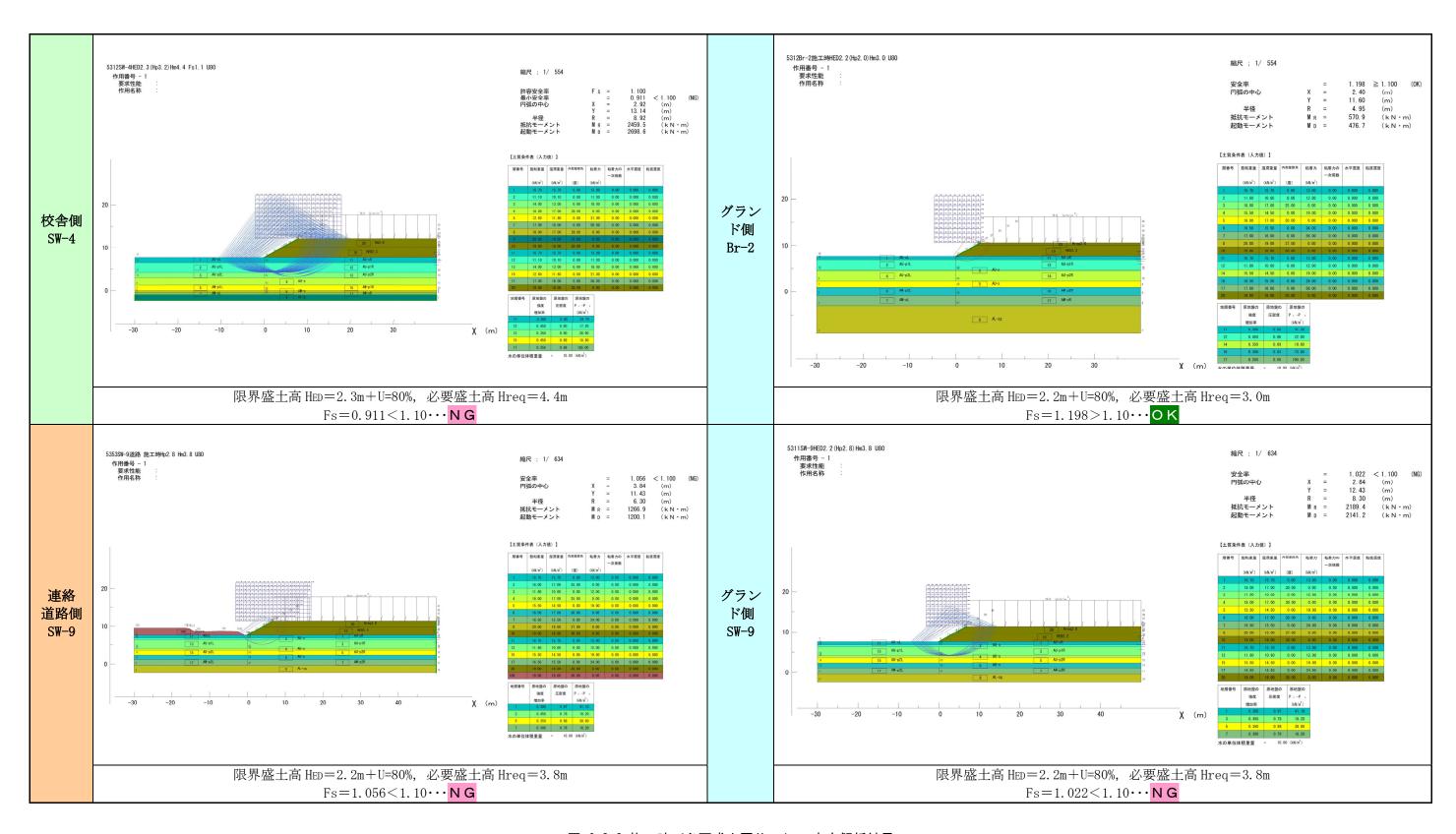


図-6.3.2 施工時(必要盛土厚 Hreq)の安定解析結果

(3) 供用時の安定解析結果

供用時は、無処理土の常時と地震時(震度法)で検討を行った。 造成盛土後の利用状況から交通荷重は見込まないこととした。 供用時の安定計算結果を図-6.3.3(1)~(2)に示し、下表にまとめた。

表-6.3.3 供用時 (無処理土) の安定解析結果

/ L -	平	A刃+になっこ	残留沈下量	供用時	安全率	対策工
位	置	解析箇所	10cm必要日数	常時	地震時	必要性有無
校舎	:側	SW-4	421	1. 294	0.818	対策要
グラン	. 15/Bil	Br-2	233	1.786	0.845	対策要
7 7 7	下側	SW-9	124	1. 361	0.752	対策要
連絡道	路側	SW-9	11	1. 444	0.845	対策要

注1) 供用時 常 時許容安全率: Fs=1.5

注 2) 供用時 地震時許容安全率: Fs=1.0

注3) 赤数字は、許容値を満足していないケース

全ての箇所で、地震時における安全率が確保できず、地盤破壊に対し何らかの対策が必要となる

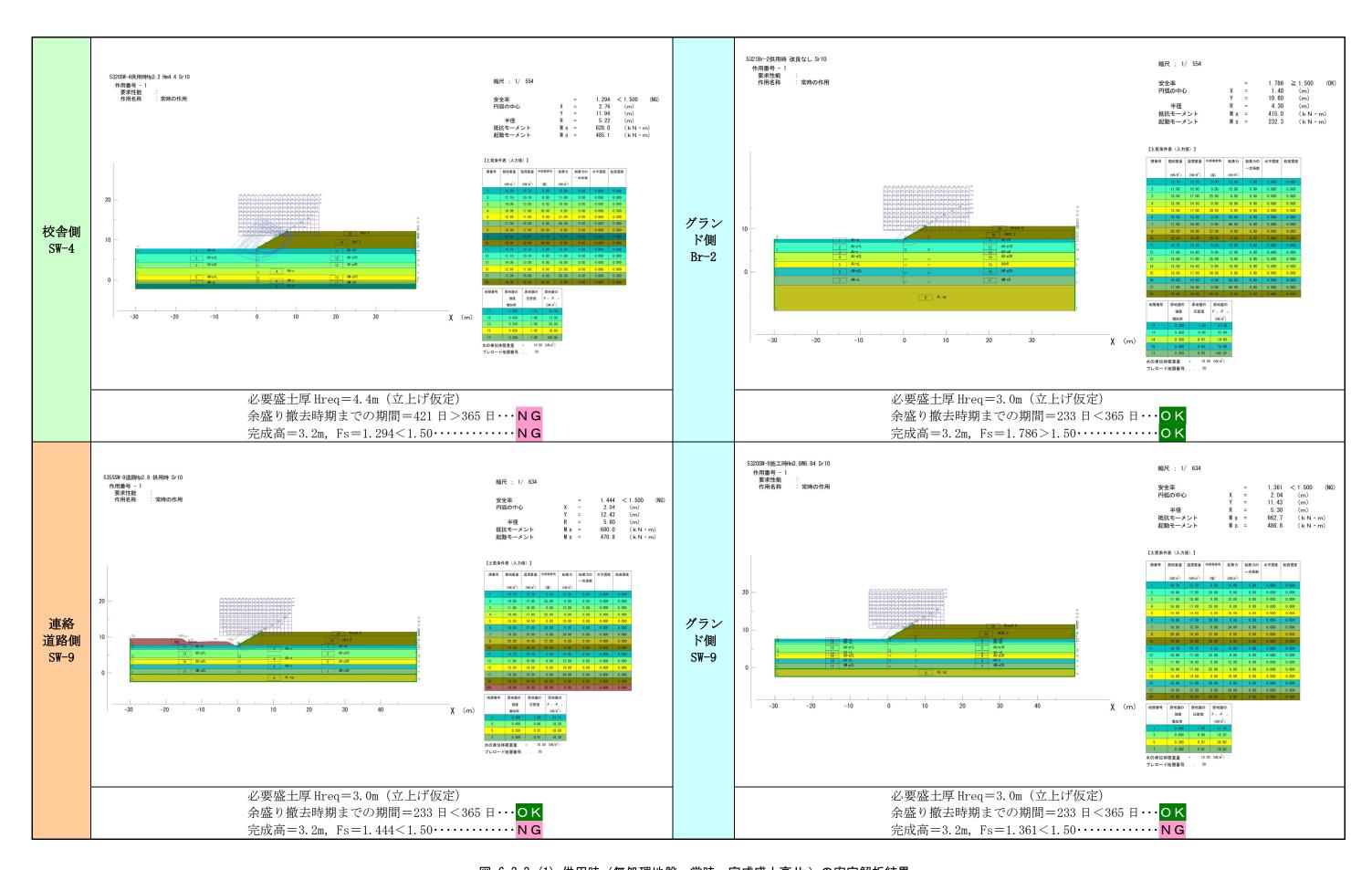


図-6.3.3 (1) 供用時 (無処理地盤, 常時, 完成盛土高 Hp) の安定解析結果

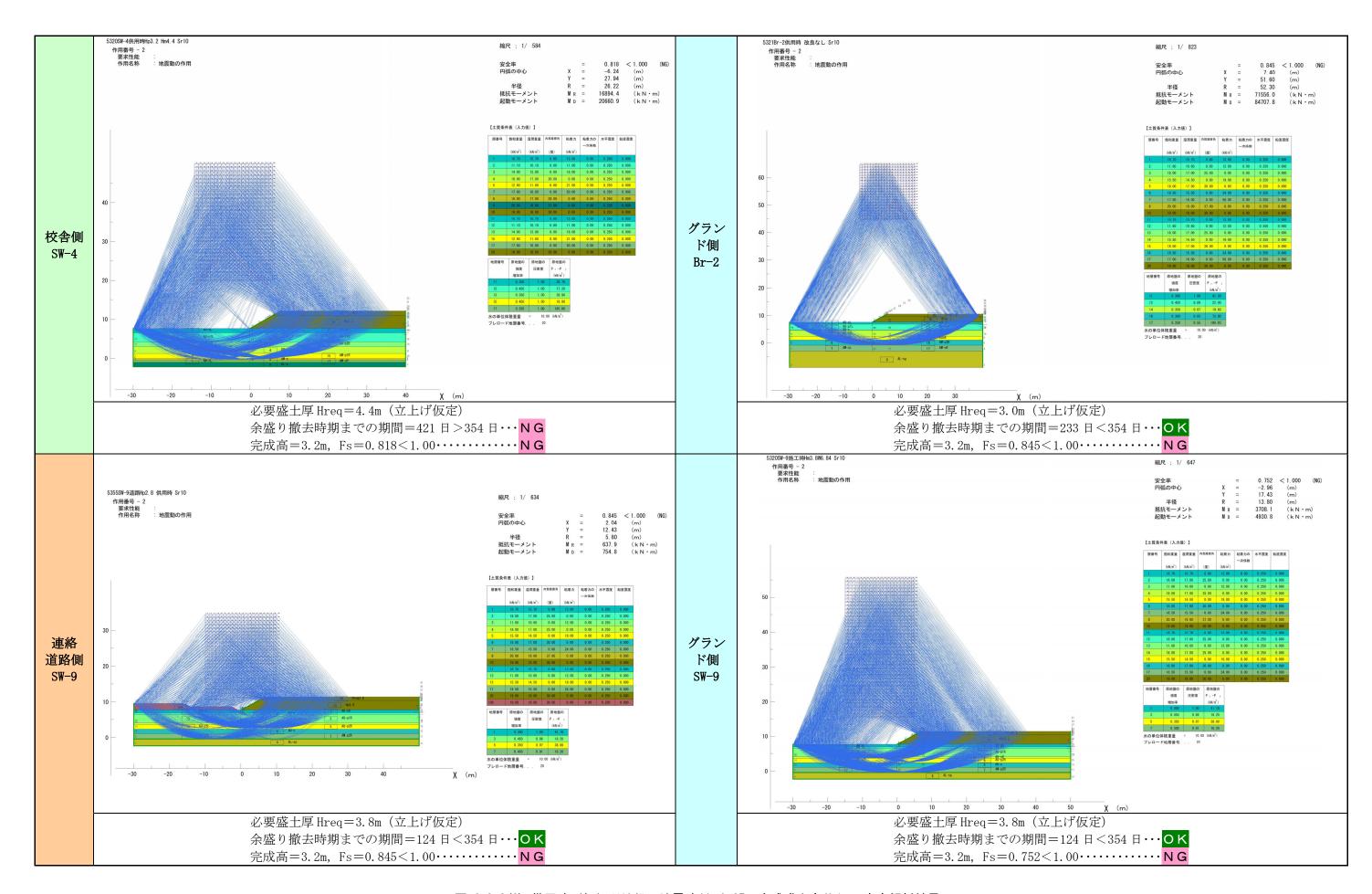


図-6.3.3(2) 供用時 (無処理地盤, 地震時 kh=0.25, 完成盛土高 Hp) の安定解析結果

(1)必要盛土厚 Hreq

各解析箇所の完成盛土高 Hp に対する必要盛土厚 Hreq を算定し、以下に示した。

【校舎側】

SW-4: 完成盛土高 Hp = 3.2 m Br-2: 完成盛土高 Hp = 2.0 m

必要盛土厚 Hreq=4.4 m 必要盛土厚 Hreq=3.0 m

SW-9: 完成盛土高 Hp = 2.8 m

必要盛土厚 Hreq=3.8 m

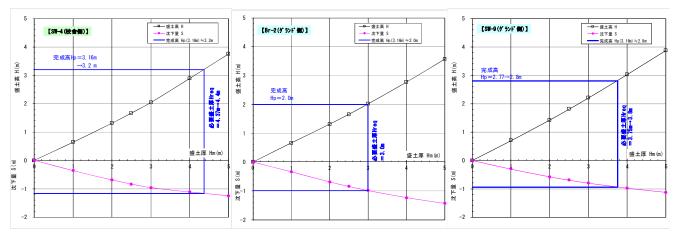


図-6.3.4 盛土高と盛土厚および沈下量の関係

(2) 施工時の沈下解析結果

各解析箇所の必要盛土厚 Hreq に対する沈下量と圧密度および放置期間を表-6.3.5 に示し、以下にまとめた。

位置	解析箇所	残留沈下量 10cm必要日数	対策工の有無
校舎側	SW-4	324	<365日 不要
グランド側	Br-2	194	<365 日 不要
クノント側	SW-9	77	<365 日 不要
連絡道路側	SW-9	II	<365 日 不要

表-6.3.4 施工時の沈下解析による放置期間

- ①グランド側では沈下時間が早いため、許容沈下量をSra=10cmとしても影響がない。
- ②グランド側は、北側 Br-2 と比較し、南側 SW-9 は必要盛土厚がやや多いものの、放置期間は 1/2.5 程度の短期間で許容残留沈下量 10cm を満足する。
- ③最も沈下量の多い AU-p1 層の分布状況から、グランド側における SW-9 の占有範囲は広く、Br-2 は 北側端部に限定される。したがって、グランド側を分ける方が経済的・施工性で優位である。
- ④校舎側は、グランド側より放置期間を多く要し、放置期間は概ね1年程度である。

以上から、<u>限界盛土高の強度増加を見込まずに必要盛土厚の立上げが可能であれば、工期間(1年間)内で許容残留沈下量を満たし、沈下に関して問題はない</u>結果である。

表-6.3.5 施工時の沈下解析結果一覧表

			盛土諸元			解析	f条件									必要盛:	上厚の沈下	解析結	 果						
	ック区分	完成	必要	限界	盛立	盛立	許容	許容	即時	圧密	最終		圧密度U	=80%		圧	密度U=90%					残留沈门	下量Sr=10c	m	
13	解析位置 —————	盛土高 Hp(m)	盛土厚 Hreq(m)	盛土高 H _{ED} (m)	速度 V(cm/日)	期間 Tm日)	残留 沈下量 Sra(cm)	放置 期間 Ta(日)	沈下量 Ss(cm)	沈下量 Sc(cm)	沈下量 Sf(cm)	沈下量 S80(cm)	残留 沈下量 Sr80(cm)		置期間 0(日)	沈下量 S90(cm)	残留 沈下量 Sr90(cm)	放置 T90	置期間 D(日)	Srの 沈下量 Ssr(cm)	圧密度 Ussr(%)		放置期間 Ta(日)		判定
校舎	 SW-4	3. 2		2. 3	5	64	10	365	2. 8	98. 4	101. 1	81.5	19. 7	165	(101)	91.3	9. 8	240	(176)						
側	011 4		4. 4	2. 3	5	88	10	365	3. 5	123. 0	126. 4	101.8	24. 6	202	(114)	114. 1	12. 3	296	(208)	116. 4	92	324	(236)	10.8ヶ月	OK
	Br-2	2. 0		2. 2	5	40	10	365	1. 4	67.7	69. 1	55. 6	13. 5	110	(70)	62. 3	6. 8	160	(120)						
グラン	DI 2		3. 0	2. 2	5	60	10	365	2. 0	97. 5	99. 5	80. 0	19. 5	136	(76)	89. 7	9. 8	195	(135)	89. 5	90	194	(134)	6.5ヶ月	OK
) ド 側	SW-9	2. 8		2. 2	5	56	10	365	4. 0	72. 2	76. 2	61. 7	14. 4	52	盛立期 間内	68. 9	7. 2	61	(5)						
	0 0		3. 8	2. 2	5	76	10	365	4. 8	90. 1	94. 9	76. 9	18. 0	70	盛立期 間内	85. 9	9. 0	78	(2)	84. 9	89	77	(1)	2.6ヶ月	OK
備	考	·Hreq=; ·①盛土 用 ·限界盛	ンド側: H _{ED} =	=2. 2m	のためくまで、必要ないのでは、のからのでは、できます。	=5cm/日とし 弦立期間は2・ 丸下量Sra= 地盤条件 ・地盤及び黒派 ・地積した泥炭 ・土地盤	~3ヶ月程度を 10~20cm , 又は, 有機 地盤		・ 校グこ水なグ き うれ層いこ が で と ド が に り と り に り に り に り に り に り こ り こ り こ と う に り こ と う に り こ と り に り に り に り に り に り に り に り に り に り	た下対象層間に が分布し よる 別北側端部Br- いさいが沈下」	igで こ排 てい -2は	い ・校舎側! ラ	ド側の放置類 ま202日 (6. より2〜3倍和	7ヶ月)	で、グ	月)	の放置期間は ランド側より		程度長く	・両方とも ・グラン l	ド側より校会	沈下量までの 舎側の放置期	間が長い	1 年以内に収? 排水条件でグ ⁻	

注): 校舎側SW-4においてAU-c層とAU-p1層の挟在砂層は、 Br-3に分布していないため考慮しないモデルとした。 ()内数字は盛立後の放置期間

()内数字は盛立後の放置期間

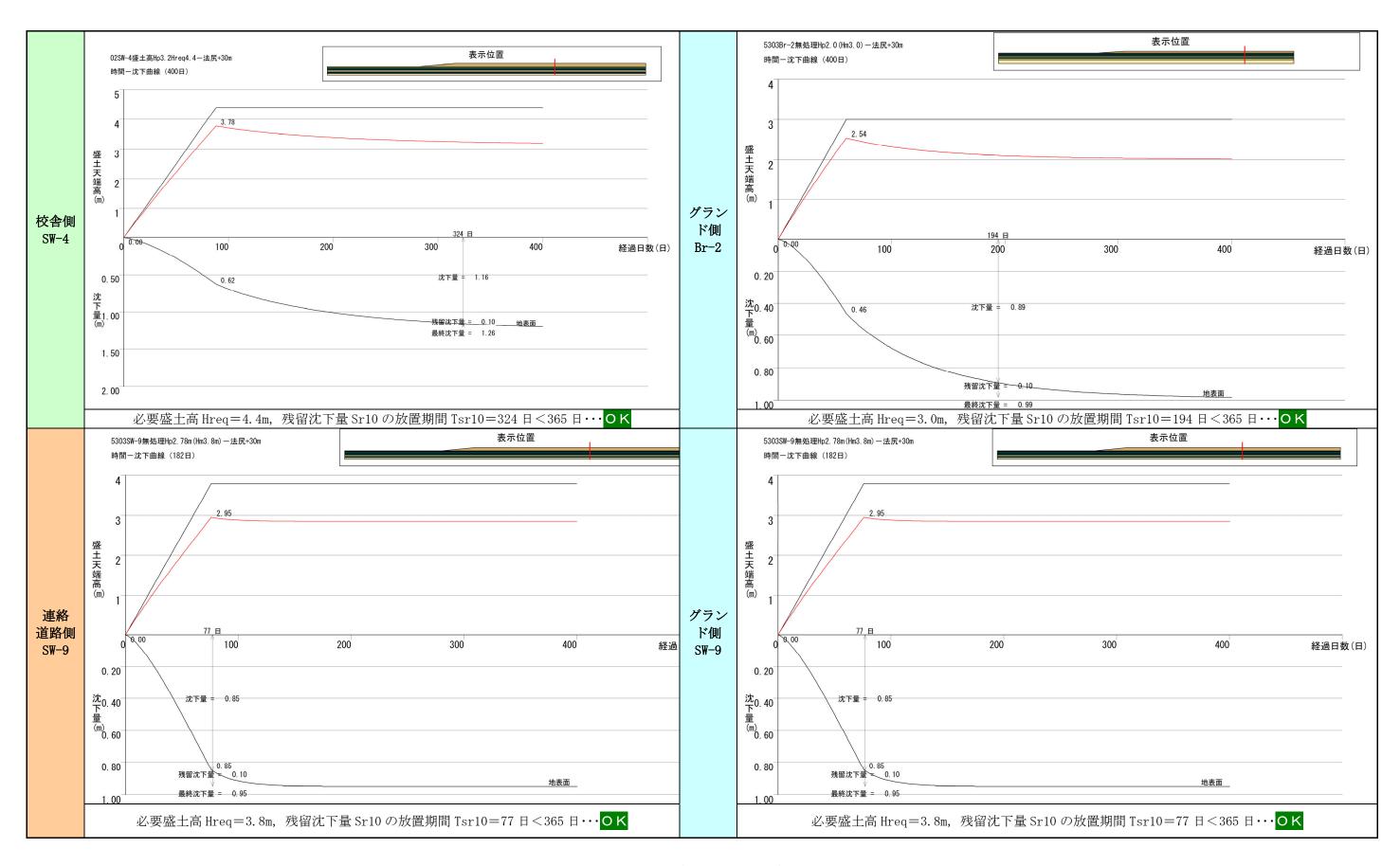


図-6.3.5 施工時(必要盛土厚 Hreq)の盛土時間-沈下曲線

(3) 供用時の沈下解析結果

盛土載荷重工法(プレロード)による強度増加を見込んだ 2 段階施工の放置期間を図-6.3.6 に示し、以下にまとめた。

表-6.3.6 施工時の沈下解析による放置期間

位 置	解析箇所	残留沈下量 10cm必要日数	対策工の有無
校舎側	SW-4	421	>365日 対策要
ガニンだ回	Br-2	233	<365 日 不要
グランド側	SW-9	124	<365 日 不要
連絡道路側	SW-9	"	<365 日 不要

注1) 赤数字は、目標値を満足していないケース

校舎側 SW-4 以外は、2 段階目の必要盛土厚 Hreq まで立上げが可能であれば、問題なく施工可能である。

校舎側 SW-4 は、強度増加による必要盛土厚 Hreq までの立上げでも目標期間内の施工は不可能で、圧密を促進する対策は期待できず、立上げまで期間を短縮するための対策が必要である。

以上から、2 段階目盛土(必要盛土厚 Hreq)の立上げが可能なる対策工が必要で、校舎側 SW-4 では早期の立上げが要求される。

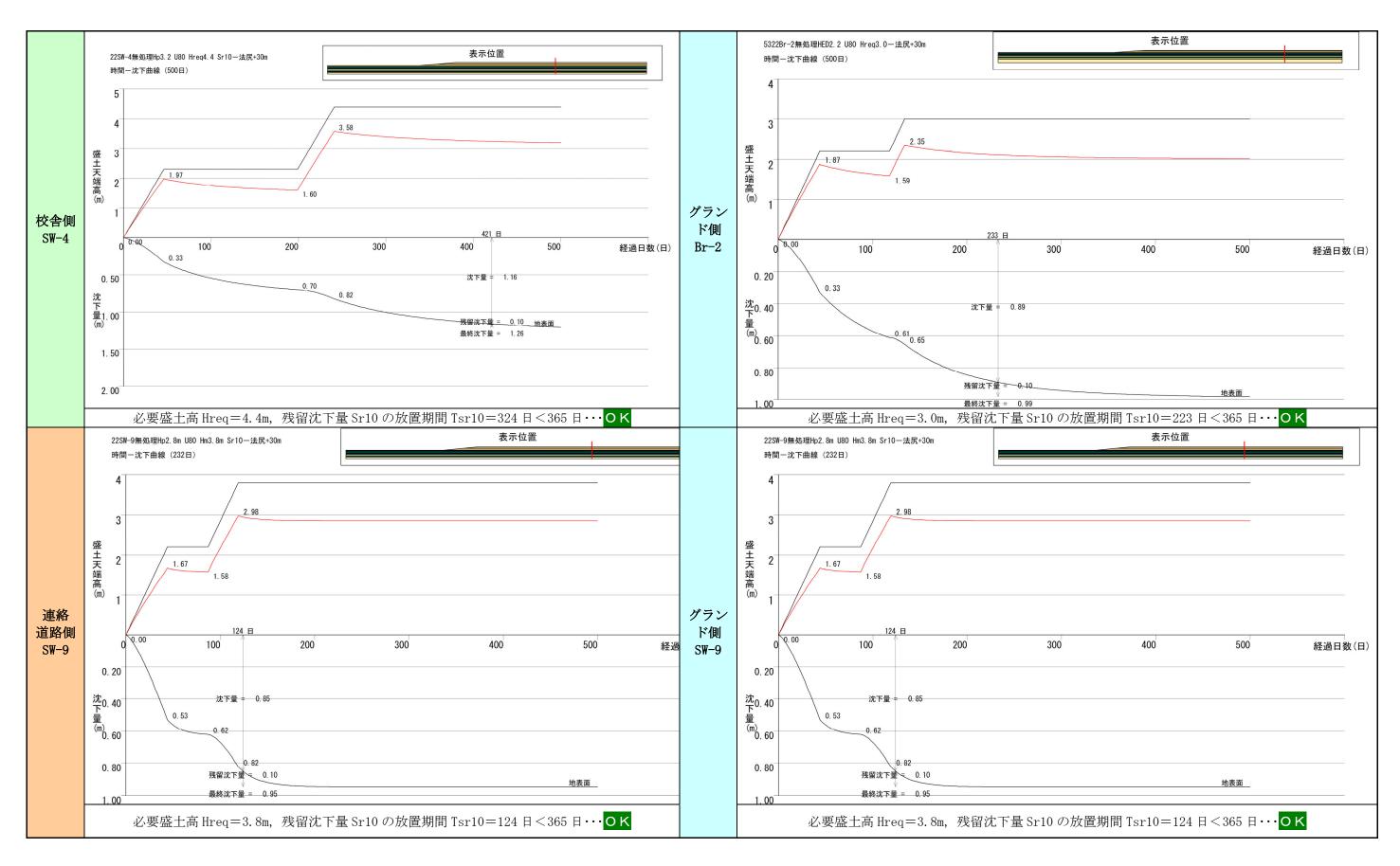


図-6.3.6 供用時 (無処理地盤、必要盛土厚 Hreq) の盛土時間 - 沈下曲線

(4) 引込み沈下解析結果

各箇所の造成盛土による周辺へ引込み沈下を検討し図-6.3.7に示し、以下にまとめた。

- ① 盛土法尻付近の沈下量はS=14~20cm程度で比較的小さい
- ② 法尻から 15m の距離の地点での引込み沈下量は 1cm 程度である。
- ③ 引込み沈下量の影響を少なくする対策として、法尻付近の縁切り溝工(深さ GL-50cm 程度)が有効と考える。

表-6.3.7 造成盛土による引込み沈下量

位 置	検討 箇所	法尻	法尻+1	法尻+3	法尻+7	法尻+10	法尻+15
校舎側	SW-4	19.8	12.7	6. 2	2. 1	1. 1	0.5
グランド側	Br-2	16.4	10.5	5. 2	1.8	1.0	0.4
クランド側	SW-9	14.8	8.0	3. 3	0.9	0.4	0.2
連絡道路側	SW-9	14. 2	8.3	3.3	0.9	0.4	0.2

【単位:cm】

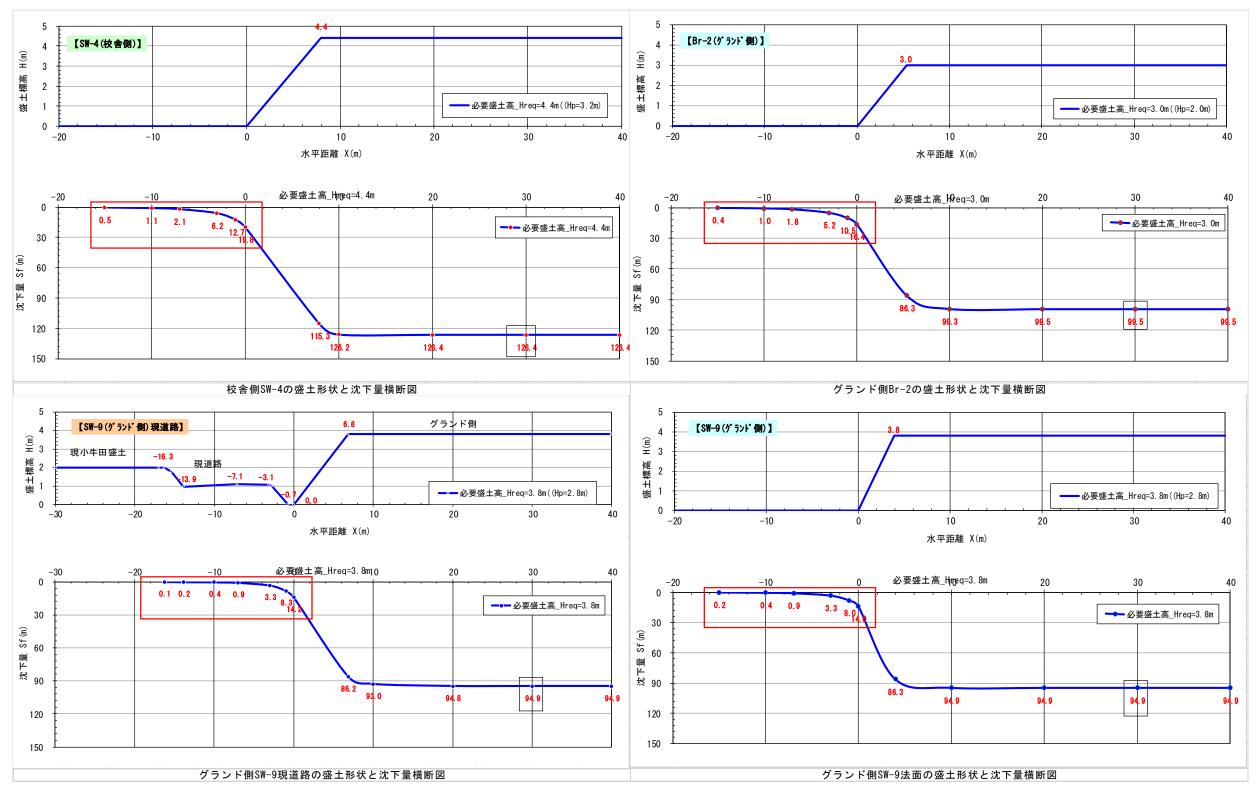


図-6.3.7 盛土形状と沈下量横断図

(5) 二次圧密対策の必要性有無の検討

一般に、高含水比で高圧縮性の高有機質土は、一次圧密後に生ずる二次圧密によるクリープ沈下が懸念される。

本業務地でも、上部沖積有機質土層 AU-p1 と中部沖積有機質土層 AM-p1 が該当し、完成盛土高 Hp と盛土載荷重工法(プレロード)の必要盛土厚 Hreq による過圧密比を精査し、二次圧密対策の必要性の有無の検討を行った。

図-6.3.8 に二次圧密係数比Rと過圧密比OCRの関係曲線を示したが、双曲線の曲率が最大点(OCR=1.3)で対策効果が大きいといわれている。

各検討箇所の過圧密比を表-6.3.8(1)~(3)に示したが、OCR=1.27~1.66 で、概ねOCRを 1.3以上である。

したがって、必要盛土厚 Hreq は完成盛土高に対し二次圧密対策も兼ねていることになり、改めて二次圧密対策を施す必要はないと判断される。

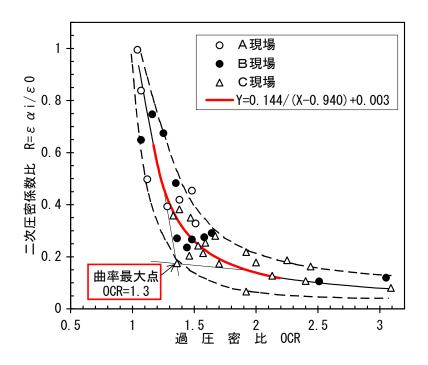


図-6.3.8 二次圧密係数と過圧密比の関係※

- 123 -

表-6.3.8(1) 二次圧密対象層と造成盛土による過圧密度(SW-4)

	校舎	側 SW-4	地盤条件		完	;成盛土高Hp=3.2m			必要盛土高Hreq=4	4. 40m	
層No	土層名	層厚 (m)	二次圧密 係数 ε α (%)	有効土被り圧 p0(kN/m²)	増加応力 ⊿p1(kN/m²)	有効応力 p0+⊿p1=σv'p (kN/m²)	沈下量 Sp(cm)	増加応力 ⊿p2(kN/m2)	有効応力 p0+⊿p2=σv'req (kN/m²)	沈下量 Sreq(cm)	OCR 2/1
1	AU-c	1. 25		10. 44	57. 60	58. 85	8. 04	79. 20	80. 45	10. 54	
2	AU-p1	2. 27	5.8	25. 38	57. 57	59. 84	56. 34	79. 16	81.43	68. 93	1. 36
3	AU-p2	1. 73		50. 17	57. 45	59. 18	15. 23	78. 99	80. 72	19. 66	
4	AU-s	1. 25		81. 72	57. 24	58. 49	2. 33	78. 69	79.94	2. 89	
5	AM-p1	1. 75	2. 3	104. 00	56. 91	58. 66	17. 50	78. 21	79. 96	22. 18	1. 36
6	AM-s	0. 50		119. 53	56. 65	57. 15	0. 45	77. 84	78. 34	0. 56	
7	AM-c	0. 75		130. 40	56. 49	57. 24	1. 25	77. 60	78. 35	1. 66	
8	AL-s	2. 24		_	_	_	ı	_	_	_	
	計						101. 15			126. 41	

表-6.3.8(2) 二次圧密対象層と造成盛土による過圧密度(Br-2)

	グラン	・ド側 Br-	2 地盤条件	<u> </u>	完	成盛土高Hp=2.00m			必要盛土高Hreq=3	3. 00m	OCR ②/①		
層No	土層名	層厚 (m)	二次圧密 係数 ε α (%)	有効土被り圧 p0(kN/m²)	増加応力 ⊿p1(kN/m²)	有効応力 ①p0+⊿p1=σv′p (kN/m²)	沈下量 Sp(cm)	増加応力 ⊿p2(kN/m2)	有効応力 ②p0+⊿p2=σv'req (kN/m²)	沈下量 Sreq(cm)			
1	AU-c	0. 70		5. 84	36. 00	36. 70	3. 06	61. 20	61.90	4. 34			
2	AU-p1	2. 25	5.8	24. 74	35. 95	38. 20	36. 36	61.12	63. 37	52. 51	1. 66		
3	AU-s	0. 15		39. 14	35. 80	35. 95	0. 24	60.86	61.01	0. 32			
4	AU-p2	2. 20		53. 25	35. 51	37. 71	17. 78	60.36	62.56	25. 60			
5	AU-s	1. 30		77. 71	34. 82	36. 12	1. 19	59. 17	60. 47	1. 63			
6	AM-p2	1. 90		105. 08	33. 96	35. 86	7. 37	57. 70	59.60	10. 57			
7	AM-c	2. 15		139. 03	32. 71	34. 86	3. 09	55. 54	57. 69	4. 51			
8	AL-s	5. 95		_	ı	_	_	-	_	-			
	計						69. 08			99. 49			

表-6.3.8 (3) 二次圧密対象層と造成盛土による過圧密度 (SW-9)

	グラン	ド側 SW-	9 地盤条件	ļ-	完	成盛土高Hp=2.80m			必要盛土高Hreq=	3. 80m	
層No	土層名	層厚 (m)	二次圧密 係数 ε α (%)	有効土被り圧 p0(kN/m²)	増加応力 ⊿p1(kN/m²)	有効応力 p0+⊿p1=σv'p (kN/m²)	沈下量 Sp(cm)	増加応力 ⊿p2(kN/m2)	有効応力 p0+⊿p2=σv'req (kN/m²)	沈下量 Sreq(cm)	O C R 2/1
1	AU-c	0. 75		6. 26	50. 40	51. 15	4. 38	64. 80	65. 55	5. 68	
2	AU-s	0. 50		17. 02	50. 40	50. 90	1. 70	64. 80	65. 30	1. 98	
3	AU-p1	2. 25	5. 8	34. 01	50. 38	52. 63	50. 78	64. 77	67.02	62. 45	1. 27
4	AU-s	0. 50		51.00	50. 31	50. 81	0. 85	64. 68	65. 18	1. 06	
5	AU-p2	1. 25		64. 25	50. 23	51. 48	13. 49	64. 57	65. 82	17. 30	
6	AU-s	1. 25		84. 25	50. 05	51. 30	1. 42	64. 34	65. 59	1. 77	
7	AM-p2	1. 50		106. 38	49. 78	51. 28	3. 55	63. 98	65. 48	4. 67	
8	AL-s	2. 00		_	_	_	_	_	_	_	
計							76. 17			94. 92	

^{※「}高有機質土の地盤工学」東洋書店 木暮敬二 著

6-3-3. 地盤変形 (現況地盤)

地盤のせん断変形による変位は、沈下量 St、隆起量 δ V、水平移動量 δ x で表されるが、沈下量と水平移動量 が最大となるのは法尻付近である。

各変位量の詳細は巻末に示し、表-6.3.9と図-6.3.9にまとめた。

- ① 沈下量Sの最大は、法尻付近でStmax=25~34cmで、次に法尻+5mで1/3に減少する。
- ② 隆起量 δ v の最大は、法尻 + 5m で δ vmax = $6 \sim 8$ cm で、次に法尻 + 10m で 2/3 に減少する。
- ③ 水平移動量 δ x の最大は、法尻付近で δ xtmax=13~17cm で、次に法尻+5m で 2/3 に減少する。

したがって、法尻付近における変位遮断工が有効で、縁切り溝工(GL-50cm程度)などが有利である。

位置	箇所	項目			変 位	量 量		
		距離 X(m)	0	4. 4	8.8	13. 1	17. 5	21. 9
校舎側	CW 4	沈下量 St (cm)	34. 13	11. 38	2. 53	1.26	0	0
一側	SW-4	隆起量δv(cm)	0	-7. 58	-5.06	-1.26	0	0
		水平移動量δx(cm)	16. 43	12. 64	7. 58	2. 53	0.63	0
		距離 X(m)	0	5. 3	10. 7	16. 0	21. 3	26. 6
	Br-2	沈下量 St (cm)	26. 87	8. 96	1.99	1.00	0	0
ゲ	br-2	隆起量δv(cm)	0	-5. 97	-3.98	-1.00	0	0
グランド側		水平移動量δx(cm)	12. 94	9. 95	5. 97	1. 99	0.50	0
ド		距離 X(m)	0	4. 0	8.0	12.0	16. 0	20.0
惻	SW-9	沈下量 St(cm)	25. 62	8. 54	1.90	0.95	0	0
	SW-9	隆起量δv(cm)	0	-5. 69	-3.80	-0.95	0	0
		水平移動量δx(cm)	12. 34	9. 49	5. 69	1.90	0.47	0

表-6.3.9 側方変位 移動量計算結果一覧表

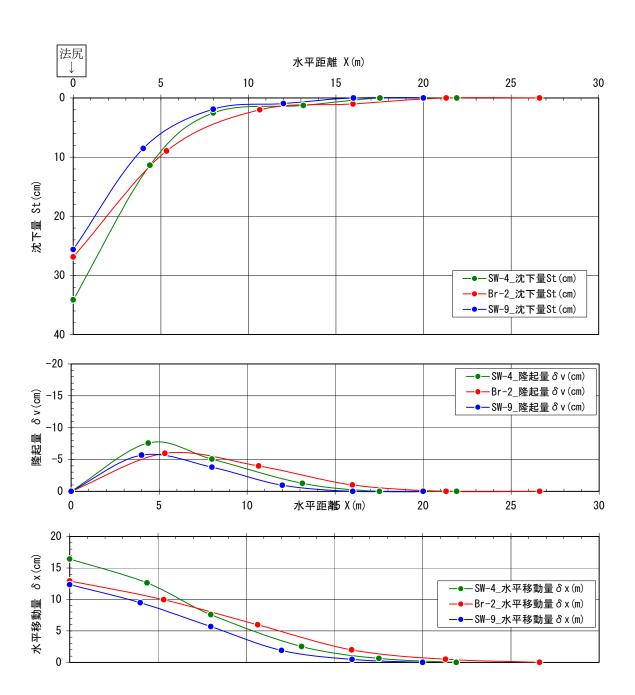


図-6.3.9 水平距離と沈下量・隆起量・水平移動量の関係図

液状化解析は、校舎側の Br-3 と, グランド側の Br-4 を代表として、標準貫入試験試料を用いて 室内土質試験を実施し、この結果に基づいて解析を実施した。

(1) 液状化解析結果 (建築基礎構造設計指針 (2019)

・地震動: 150gal, 200gal, 350gal の 3 地震動とした。

・上載荷重:上載荷重を見込まない現況地盤と、造成盛土荷重を考慮した液状化解析を行った。

校舎側 Br-3: 上載荷重(完成盛土高 Hp=3.2m)=3.2×18 =57.6 kN/m²

グランド側 Br-: 上載荷重 (完成盛土高 Hp=2.8m) =2.8×18 =50.4 kN/m²

液状化解析結果の詳細は巻末に示し、表-6.3.12~表 6.3.13 に一覧表を示し、表-6.3.10~表-6.3.11 にまとめた。

一般に、上載荷重の有無にかかわらず地震動 150gal, 200gal, 350gal に従い、FL 値は減少する。 校舎側の Br-3 では $FL \le 1.0$ の液状化が生ずる層は、地震動が大きくなるほど多くなる。上載荷重 (57.6 kN/m^2) がある場合、FL 値はやや大きくなるが、FL>1.0 まで至っていないことと、上載荷重による液状化の危険度はあまり変化しないことから、上載荷重の効果は小さいと判断される。

一方、グランド側の Br-4 では FL \leq 1.0 の液状化が生ずる層は、地震動が大きくなるほど多くなる傾向であるが、上載荷重(50.4 kN/m²)がある場合、FL 値と FL>1.0 の層にバラツキがみられ、上載荷重による液状化の危険度 PL 値の度合は低下し、<u>校舎側 Br-3 の上載荷重より小さいが、上載荷重の効果は大きい</u>と判断される。

表-6.3.10 現況地盤液状化解析結果一覧表

/ \ ==	解析	75 0		地震動		備考
位置	箇所	項目	150gal	200gal	350gal	備 考
		FL値	FL≦1.0 は1点のみ で、液状化層は非常 に少ない	FL≦1.0 は 7 点で、 上部・中部沖積層は 少なく下部沖積~洪 積層に多くなる	FL≦1.0 は 10 点で、 上部・中部沖積層は 少なく下部沖積層〜 洪積層に多くなる	上部〜下部沖積層〜洪積 層が対象 液状化層の増加 FL 値の減少が顕著
校		PL 値	PL=0.6 で液状化の 危険度は低い	PL=3.1 で液状化の 危険度は低い	PL=15.7 で液状化の 危険度はかなり高い	危険度は、150gal と 200galで低位 350galではかなり高い。
校舎側	Br-3	Dcy 値	Dcy=2.1cm で沈下量 は軽微	Dcy=7.5cm で沈下量 は小位	Dcy=14.4cm で沈下 量は中位	沈下量は軽微~小位~中 位
		平均 β値	洪積 Dc 層のみのβ =0.22で極小位	上部・中部沖積層は β = 0. 21 \sim 0. 33 で極 小位 \sim 小位 下部沖積層 \sim 洪積 Ds 層は β = 0. 45 \sim 1. 00 で小位 \sim 中位	上部・中部沖積層は β = 0. 21 \sim 0. 41 で極 小位 \sim 小位 下部沖積層 \sim 洪積 Ds 層は β = 0. 54 \sim 1. 00 で中位	上部・中部沖積層は極小 位〜小位 下部沖積層〜洪積層は極 小位〜小位〜中位
		FL値	FL≦1.0 は 5 点で、 上部と中部沖積層に 多い	FL≦1.0 は 8 点で、 中部沖積層と洪積 Dc 層に多い	FL≦1.0 は 9 点で、 中部沖積層と洪積 Dc 層に多い	上部〜中部沖積層, 洪積 層が対象 下部沖積層は対象外 FL 値の減少が顕著
グランド	Br-4	PL 値	PL=5.7 で液状化の 危険度は高い	危険度は高い	PL=13.7 で液状化の 危険度は高い	危険度は 150gal と 200gal で高位 350gal ではかなり高い。
ンド 側	DI T	Dcy 値	Dcy=9cm で沈下量は 小位	は中位	Dcy=15cm で沈下量 は中位	沈下量は小位~中位
		平均 β 値	上部と中部沖積層の 多くは β < 0.25 で極 小位 洪積 β B 層は β = 1.0 で中位	多くは $\beta=0.17\sim0.36$ で極小位〜小位 洪積 Dc 層は $\beta=0.82$ で中位	上部と中部沖積層の 多くは $\beta=0.17\sim$ 0.36で極小位〜小位 洪積 Dc 層は $\beta=$ 0.86で中位	上部・中部沖積層は極小位〜小位 洪積 Dc 層は中位

ここに、FL 値:液状化の安全率 PL 値:危険度の指標 Dcy 値:沈下量の総和 β 値:水平地盤反力係数低減率

表-6.3.11 現況地盤(盛土荷重考慮)液状化解析結果一覧表

/ -	解析	否口		地震動		備考
位置	箇所	項目	150gal	200gal	350gal	備考
		FL値	FL≦1.0 はなく、液 状化層はない	FL≦1.0 は 6 点で、 中部・下部沖積層と 洪積層が対象	FL ≤ 1.0 は 12 点 で、上部・中部・下 部沖積層・洪積層 (概ね全層) が対象	液状化層の増加 FL 値の減少が顕著
校		PL 値	PL=0 で液状化の危 険度はかなり低い	PL=2.1 で液状化の 危険度は低い	PL=16.1 で液状化 の危険度はかなり高 い	危険度は 150gal と 200gal でかなり低位〜低位 350gal はかなり高い。
校舎側	Br-3	Dcy 値	Dcy=0cm で沈下し ない	Dcy = 6.7cm で沈下 量は小位	Dcy=19.2cm で沈下 量は中位	沈下量は軽微~小位~中位
		平均 β値	βの考慮は不要	中部沖積層と洪積 Dc 層は $\beta=0.17\sim0.24$ で極小位 下部沖積層〜洪積 Ds 層は $\beta=0.43\sim0.47$ で小位	上部・中部沖積層は $\beta=0.21\sim0.29$ で極小位 \sim 小位 下部沖積層 \sim 洪積層 は $\beta=0.43\sim0.65$ で小位 \sim 中位	上部・中部沖積層は極小位 〜小位 下部沖積層〜洪積層は小位 〜中位
		凡値	FL≦1.0 は 3 点で、 上部と中部沖積砂質 土と洪積 Dc 層である	FL≦1.0 は 6 点で、 上部と中部沖積層と 洪積 Dc 層下部が対 象	FL≦1.0 は 4 点で、 上部・中部・下部沖 積層の砂・礫質土の 一部が対象	上部〜下部沖積層の砂質土 が対象 下部沖積層の下部と洪積 Dc層は対象外 FL値の減少が顕著
グラン		PL 値	PL=0.8 で液状化の 危険度は低い	PL=5.1 で液状化の 危険度は高い	PL=8.6 で液状化の 危険度は高い	危険度は 200gal と 350gal は高い
ンド側	Br-4	Dcy 値	Dcy = 4.9cm で沈下 量は軽微	Dcy=11cm で沈下量 は中位	Dcy=7cm で沈下量 は小位	沈下量は 200gal より 350gal が低い (中位→小 位)
		平均 β値	中部沖積層は β < 0.25で極小位 洪積 β Dc 層は β = 1.0で中位	上部と中部沖積層の は $\beta = 0.11 \sim 0.27$ で極小位~小位 洪積 Dc 層は $\beta =$ 1.00 で中位	上部と中部沖積層の 砂質土層は β =0.12 \sim 0.14で極小位 下部沖積層は β = 1.00で中位	上部・中部沖積層は極小位 〜小位 下部沖積層と洪積 Dc 層は 中位

ここに、FL 値:液状化の安全率 PL 値:危険度の指標 Dcy 値:沈下量の総和 β 値:水平地盤反力係数低減率

- 注1) 液状化抵抗率 FL: 地盤内の深さ毎に液状化の可能性を判定したもの。FL 値≦1 の場合、液状化の可能性がある。
- 注2) 液状化危険度 PL 値:各土層の液状化抵抗率 (FL 値) を深さ方向に重みをつけて足し合わせた値。
- 注3) 沈下量の総和 Dcy: 液状化地盤 (FL≦1.0) から、地表変位 Dcy を算出し足し合わせた値。
- 注4) 水平地盤反力低減率β:液状化地盤(FL≦1.0)の水平地盤反力係数 khL を低減する値。
- 参考) 東北地方太平洋沖地震で、宮城県が美里町北浦に設置した地震計の3成分合成最大加速度は 959.4gal

液状化FL計算結果_自然地盤

									i								
Br-3			化抵抗率				危険度⊿PL				下量 Δ Dcy(支力係数の位		
深さ(m) 土質記号 実)150gal (①200gal	①350gal		②150gal	②200gal	③350gal		③150gal	③200gal	③350gal		4)150gal	4)200gal	4 350gal	
	0. 9																
	0																
	0	1. 151	0.863	0. 493			1. 042	3. 865			0. 96	1. 73			0. 202	0. 202	
	0																
		1. 468	1. 101	0. 620				2. 655				0. 91				0. 403	
		3. 282	2. 461	1. 367													
	0. 9																
	4. 0																
		1. 172	0.879	0. 498			0.344	1. 424			0. 73	1. 17			0. 327	0. 323	
		1. 277	0. 958	0. 536			0. 234	2. 585			0. 58	1. 09			1. 000	1. 000	
		1. 477	1. 108	0. 618				1. 663				0. 93				1. 000	
		3. 364	2. 523	1. 442													
		3. 458	2. 594	1. 482													
		1. 993	1. 495	0. 841				0. 250				0. 69				1. 000	
	5.0	0. 808	0.606	0. 345		0. 541	1. 111	1. 848		2. 09	2. 82	3. 22		0. 218	0. 218	0. 214	
		1. 132	0.849	0. 482			0. 224	0. 767			0. 92	1. 60			0. 561	0. 553	
	8. 0	3. 059	2. 294	1. 277													
		1. 140	0.855	0. 486			0. 123	0. 437			0.96	1. 69			0. 515	0. 508	
	5. 0	1. 293	0.970	0. 552			0.014	0. 204			0. 52	1. 35			0. 665	0. 661	
20. 30 Dc 2	2. 0				_												
			計		PL	0. 54	3. 09	15. 70	Dcy	2. 09	7. 49	14. 38		々	層のβ平均	5.店	
			評価		FL	低い	低い	かなり高い	DCy	軽微	小	中		₩	層のタギ	列胆	
													AU-p1	-	0. 202	0. 202	
		液状	化の判定	ː FL		危険	度 PL			沈下量	Dcy(cm)		AU-s	-	-	0.403	平均低減率β
	FI	L≦1.0	液状化	化する		PL=0	かなり低い			0	なし		AM-s	_	0. 327	0. 323	0~0.25 極小位
		L>1.0	液状化	しない		0 <pl≦5< td=""><td>低い</td><td></td><td></td><td>0~5</td><td>軽微</td><td></td><td>AL-g</td><td>_</td><td>1.000</td><td>1.000</td><td>0. 25~0. 5 小位</td></pl≦5<>	低い			0~5	軽微		AL-g	_	1.000	1.000	0. 25~0. 5 小位
					,	5 <pl≦15< td=""><td>高い</td><td></td><td></td><td>5~10</td><td>小</td><td></td><td>Dc</td><td>0. 218</td><td>0. 442</td><td>0.625</td><td>0.5~1.0 中位</td></pl≦15<>	高い			5 ~ 10	小		Dc	0. 218	0. 442	0.625	0.5~1.0 中位
						15 <pl< td=""><td>かなり高い</td><td></td><td></td><td>10~20</td><td>中</td><td></td><td>Ds</td><td>_</td><td>0. 538</td><td>0. 531</td><td>1.0 大位</td></pl<>	かなり高い			10~20	中		Ds	_	0. 538	0. 531	1.0 大位
								l.		20~40	大						
										40~	甚大						
												="					
Br-4		液状	化抵抗率	. FL	1	- :	危険度⊿PL	_		沈	下量 Δ Dcy(cm)	1	水平地盤	支力係数の位	氐減係数 <i>β</i>	Ī
Br-4 深さ(m) 土質記号 実	測N値 ①				1					沈 ⁻ ③150gal]				
深さ(m) 土質記号 実			1)200gal	FL ①350gal 0.416	,		②200gal	②350gal		③150gal	③200gal	③350gal			4)200gal	4350gal	
深さ(m) 土質記号 実 1.31 AU-s 1	1.0)150gal (①350gal	I	②150gal								4)150gal			
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7)150gal (1)200gal	①350gal	•	②150gal	②200gal	②350gal		③150gal	③200gal	③350gal		4)150gal	4)200gal	4350gal	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1	1. 0 7. 0)150gal (1)200gal	①350gal		②150gal	②200gal	②350gal		③150gal	③200gal	③350gal		4)150gal	4)200gal	4350gal	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10	1. 0 7. 0 7. 0 0. 0)150gal (1)200gal	①350gal		②150gal	②200gal	②350gal		③150gal	③200gal	③350gal		4)150gal	4)200gal	4350gal	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3	1. 0 7. 0 7. 0 0. 0)150gal (0. 970	①200gal 0. 729 0. 500	①350gal 0. 416 0. 286		②150gal 0. 269	②200gal 2. 404	2350ga1 5. 191 3. 937		3150gal 0.63	③200gal 1.42	3350gal 1.94 2.06		4)150gal 0.164	(4)200gal 0.165	4350gal 0.164	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1	1. 0 7. 0 7. 0 0. 0	0. 970 0. 667	①200gal 0.729	①350gal 0.416		2150gal 0. 269	2.404 2.756	②350gal 5. 191		3150gal 0. 63	3200ga1 1.42 1.98	3350gal 1.94		@150gal 0.164 0.171	(4)200gal 0. 165 0. 171	(4)350gal 0.164 0.171	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0	0. 970 0. 667 0. 683 1. 033 0. 583	0. 729 0. 500 0. 513 0. 778 0. 437	0. 416 0. 286 0. 293 0. 443 0. 250		2150gal 0. 269	2. 404 2. 404 2. 756 2. 500 1. 829 2. 635	3. 937 3. 634 4. 600 3. 512		3150gal 0. 63	3200ga1 1.42 1.98 2.01 0.86 3.03	3350gal 1. 94 2. 06 2. 14 1. 10 3. 04		@150gal 0.164 0.171	0. 165 0. 165 0. 171 0. 165 0. 358 0. 109	0. 164 0. 164 0. 171 0. 164 0. 355 0. 109	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0	0. 970 0. 667 0. 683 1. 033	0. 500 0. 778	0. 416 0. 286 0. 293 0. 443 0. 250	,	2150gal 0. 269 1. 837 1. 629	2. 404 2. 756 2. 500 1. 829	3. 937 3. 634 4. 600 3. 512		3150gal 0. 63 1. 68 1. 70	3200ga1 1. 42 1. 98 2. 01 0. 86	3350gal 1. 94 2. 06 2. 14 1. 10 3. 04		0. 171 0. 164	0. 165 0. 165 0. 165 0. 171 0. 165 0. 358	0. 164 0. 164 0. 171 0. 164 0. 355 0. 109	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6	0. 970 0. 667 0. 683 1. 033 0. 583	0. 729 0. 500 0. 513 0. 778 0. 437	0. 416 0. 286 0. 293 0. 443 0. 250	,	2150gal 0. 269 1. 837 1. 629	2. 404 2. 404 2. 756 2. 500 1. 829 2. 635	3. 937 3. 634 4. 600 3. 512		3150gal 0. 63 1. 68 1. 70	3200ga1 1.42 1.98 2.01 0.86 3.03	3350gal 1. 94 2. 06 2. 14 1. 10 3. 04		0. 171 0. 164	0. 165 0. 165 0. 171 0. 165 0. 358 0. 109	0. 164 0. 164 0. 171 0. 164 0. 355 0. 109	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046	0. 729 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049 2. 156	0. 416 0. 286 0. 293 0. 443 0. 250 0. 448		2150gal 0. 269 1. 837 1. 629	2. 404 2. 404 2. 756 2. 500 1. 829 2. 635	3. 937 3. 634 4. 600 3. 512		3150gal 0. 63 1. 68 1. 70	3200ga1 1.42 1.98 2.01 0.86 3.03	3350gal 1. 94 2. 06 2. 14 1. 10 3. 04		0. 171 0. 164	0. 165 0. 165 0. 171 0. 165 0. 358 0. 109	0. 164 0. 164 0. 171 0. 164 0. 355 0. 109	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 4	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 33. 0 5. 6 2. 8 6. 0 4. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731	0. 500 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049	0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171		2150gal 0. 269 1. 837 1. 629	2. 404 2. 404 2. 756 2. 500 1. 829 2. 635	3. 937 3. 634 4. 600 3. 512		3150gal 0. 63 1. 68 1. 70	3200ga1 1.42 1.98 2.01 0.86 3.03	3350gal 1. 94 2. 06 2. 14 1. 10 3. 04		0. 171 0. 164	0. 165 0. 165 0. 171 0. 165 0. 358 0. 109	0. 164 0. 164 0. 171 0. 164 0. 355 0. 109	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 4 13.30 AL-s 8	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125	0. 729 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049 2. 156 2. 253 2. 344	0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232		2150gal 0. 269 1. 837 1. 629	2. 404 2. 404 2. 756 2. 500 1. 829 2. 635	3. 937 3. 634 4. 600 3. 512		3150gal 0. 63 1. 68 1. 70	3200ga1 1.42 1.98 2.01 0.86 3.03	3350gal 1. 94 2. 06 2. 14 1. 10 3. 04		0. 171 0. 164	0. 165 0. 165 0. 171 0. 165 0. 358 0. 109	0. 164 0. 164 0. 171 0. 164 0. 355 0. 109	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 2	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232	0. 729 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049 2. 156 2. 253 2. 344 2. 424	0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288		2150gal 0. 269 1. 837 1. 629	2. 404 2. 404 2. 756 2. 500 1. 829 2. 635	3. 937 3. 634 4. 600 3. 512		3150gal 0. 63 1. 68 1. 70	3200ga1 1.42 1.98 2.01 0.86 3.03	3350gal 1. 94 2. 06 2. 14 1. 10 3. 04		0. 171 0. 164	0. 165 0. 165 0. 171 0. 165 0. 358 0. 109	0. 164 0. 164 0. 171 0. 164 0. 355 0. 109	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 33	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125	0. 729 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049 2. 156 2. 253 2. 344	0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339		2150gal 0. 269 1. 837 1. 629	2. 404 2. 404 2. 756 2. 500 1. 829 2. 635	3. 937 3. 634 4. 600 3. 512		3150gal 0. 63 1. 68 1. 70	3200ga1 1.42 1.98 2.01 0.86 3.03	3350gal 1. 94 2. 06 2. 14 1. 10 3. 04		0. 171 0. 164	0. 165 0. 165 0. 171 0. 165 0. 358 0. 109	0. 164 0. 164 0. 171 0. 164 0. 355 0. 109	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 14. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 3. 434	0. 729 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049 2. 156 2. 253 2. 344 2. 424 2. 508 2. 575	0. 416 0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472		2150gal 0. 269 1. 837 1. 629	2. 756 2. 500 1. 829 2. 635 1. 343	3. 937 3. 634 4. 600 3. 512 3. 543		3150gal 0. 63 1. 68 1. 70	3)200ga l 1.42 1.98 2.01 0.86 3.03 0.84	3350gal 1.94 2.06 2.14 1.10 3.04 1.11		0. 171 0. 164	0. 165 0. 165 0. 171 0. 165 0. 358 0. 109 0. 357	0. 171 0. 164 0. 164 0. 355 0. 109 0. 352	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 3 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 14. 0 19. 0 1. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 3. 434 1. 210	0. 729 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049 2. 156 2. 253 2. 344 2. 424 2. 508 2. 575 0. 909	0. 416 0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518		2150gal 0. 269 1. 837 1. 629	2. 756 2. 500 1. 829 2. 635 1. 343	3. 937 3. 634 4. 600 3. 512 3. 543		3150gal 0. 63 1. 68 1. 70	3)200ga l 1.42 1.98 2.01 0.86 3.03 0.84	3350gal 1.94 2.06 2.14 1.10 3.04 1.11		0. 171 0. 164	0. 171 0. 165 0. 165 0. 171 0. 165 0. 358 0. 109 0. 357	0. 164 0. 164 0. 171 0. 164 0. 355 0. 109 0. 352	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 25	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 14. 0 19. 0 11. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 3. 434 1. 210 1. 213	0. 729 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049 2. 156 2. 253 2. 344 2. 424 2. 508 2. 575	0. 416 0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520		2150gal 0. 269 1. 837 1. 629	2. 756 2. 500 1. 829 2. 635 1. 343	3. 937 3. 634 4. 600 3. 512 3. 543 0. 650 0. 408		3150gal 0. 63 1. 68 1. 70	3)200ga l 1.42 1.98 2.01 0.86 3.03 0.84	3350gal 1.94 2.06 2.14 1.10 3.04 1.11		0. 171 0. 164	0. 165 0. 165 0. 171 0. 165 0. 358 0. 109 0. 357	0. 171 0. 164 0. 164 0. 355 0. 109 0. 352 0. 732 0. 700	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 29 19.30 Dc 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 4. 0 9. 0 1. 0 1. 0 19. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 3. 434 1. 210 1. 213 1. 515	0. 729 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049 2. 156 2. 253 2. 344 2. 424 2. 508 2. 575 0. 909 0. 912 1. 148	0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520 0. 649		2150gal 0. 269 1. 837 1. 629	2. 756 2. 500 1. 829 2. 635 1. 343	3. 937 3. 634 4. 600 3. 512 3. 543		3)150ga1 0. 63 1. 68 1. 70 2. 76	3)200ga l 1.42 1.98 2.01 0.86 3.03 0.84 0.68	3350gal 1.94 2.06 2.14 1.10 3.04 1.11 1.30 1.34 0.96		0.171 0.164 0.109	0. 171 0. 165 0. 165 0. 171 0. 165 0. 358 0. 109 0. 357	0. 171 0. 164 0. 164 0. 355 0. 109 0. 352 0. 702 0. 700 1. 000	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 29 19.30 Dc 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 4. 0 9. 0 1. 0 1. 0 19. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 3. 434 1. 210 1. 213	0. 729 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049 2. 156 2. 253 2. 344 2. 424 2. 508 2. 575 0. 909 0. 912 1. 148 0. 628	0. 416 0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520		2)150gal 0. 269 1. 837 1. 629	2. 756 2. 500 1. 829 2. 635 1. 343	3. 937 3. 634 4. 600 3. 512 3. 543 0. 650 0. 408 0. 123		3)150ga1 0. 63 1. 68 1. 70 2. 76	3)200ga l 1.42 1.98 2.01 0.86 3.03 0.84 0.68 0.68	3350gal 1.94 2.06 2.14 1.10 3.04 1.11 1.30 1.34 0.96 3.24		0. 171 0. 164	0. 171 0. 165 0. 165 0. 171 0. 165 0. 358 0. 109 0. 357	0. 171 0. 164 0. 164 0. 355 0. 109 0. 352 0. 732 0. 700	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 29 19.30 Dc 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 4. 0 9. 0 1. 0 1. 0 19. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 3. 434 1. 210 1. 213 1. 515	0. 729 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049 2. 156 2. 253 2. 344 2. 424 2. 508 2. 575 0. 909 0. 912 1. 148 0. 628	0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520 0. 649	DI	2)150gal 0. 269 1. 837 1. 629 1. 954	2. 756 2. 500 1. 829 2. 635 1. 343 0. 122 0. 075	3. 937 3. 634 4. 600 3. 512 3. 543 0. 650 0. 408		3)150ga1 0. 63 1. 68 1. 70 2. 76	3)200ga l 1. 42 1. 98 2. 01 0. 86 3. 03 0. 84 0. 68 0. 68 2. 79 14. 29	3350gal 1.94 2.06 2.14 1.10 3.04 1.11 1.30 1.34 0.96 3.24 18.23		0. 171 0. 164 0. 171 0. 164 0. 109	0. 171 0. 165 0. 165 0. 358 0. 109 0. 357 0. 736 0. 703	0. 171 0. 164 0. 164 0. 355 0. 109 0. 352 0. 700 1. 000 1. 000	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 29 19.30 Dc 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 4. 0 9. 0 1. 0 1. 0 19. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 3. 434 1. 210 1. 213 1. 515	0. 729 0. 500 0. 513 0. 778 0. 437 0. 791 2. 049 2. 156 2. 253 2. 344 2. 424 2. 508 2. 575 0. 909 0. 912 1. 148 0. 628	0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520 0. 649	PL	2)150gal 0. 269 1. 837 1. 629	2. 756 2. 500 1. 829 2. 635 1. 343	3. 937 3. 634 4. 600 3. 512 3. 543 0. 650 0. 408 0. 123	Dcy	3)150ga1 0. 63 1. 68 1. 70 2. 76	3)200ga l 1.42 1.98 2.01 0.86 3.03 0.84 0.68 0.68	3350gal 1.94 2.06 2.14 1.10 3.04 1.11 1.30 1.34 0.96 3.24		0. 171 0. 164 0. 171 0. 164 0. 109	(4)200gal 0.165 0.171 0.165 0.358 0.109 0.357 0.736 0.703 1.000	0. 171 0. 164 0. 164 0. 355 0. 109 0. 352 0. 702 0. 700 1. 000	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 29 19.30 Dc 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 4. 0 9. 0 1. 0 1. 0 19. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 3. 434 1. 210 1. 213 1. 515 0. 833	① 200gal ① 729 ② 500 ② 513 ② 778 ③ 437 ② 791 2 049 2 156 2 253 2 344 2 424 2 508 2 575 ③ 909 ③ 912 1 148 ③ 628 富十 富平価	0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520 0. 649 0. 357	PL	②150gal 0. 269 1. 837 1. 629 1. 954	②200gal 2.404 2.756 2.500 1.829 2.635 1.343 0.122 0.075	3. 937 3. 634 4. 600 3. 512 3. 543 0. 650 0. 408 0. 123		3)150ga1 0. 63 1. 68 1. 70 2. 76 2. 05 8. 82	3)200ga1 1.42 1.98 2.01 0.86 3.03 0.84 0.68 0.68 2.79 14.29	3350gal 1.94 2.06 2.14 1.10 3.04 1.11 1.30 1.34 0.96 3.24 18.23	AU-s	(4)150gal 0.164 0.171 0.164 0.109 1.000 各 0.164	(4)200gal 0.165 0.171 0.165 0.358 0.109 0.357 0.736 0.703 1.000 層のβ平地	0. 164 0. 164 0. 171 0. 164 0. 355 0. 109 0. 352 0. 700 1. 000 1. 000	
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 29 19.30 Dc 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 4. 0 9. 0 1. 0 1. 0 19. 0	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 3. 434 1. 210 1. 213 1. 515 0. 833	①200gal 0.729 0.500 0.513 0.778 0.437 0.791 2.049 2.156 2.253 2.344 2.424 2.508 2.575 0.909 0.912 1.148 0.628 計 評価	0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520 0. 649 0. 357	PL	2)150gal 0. 269 1. 837 1. 629 1. 954	②200gal 2.404 2.756 2.500 1.829 2.635 1.343 0.122 0.075	3. 937 3. 634 4. 600 3. 512 3. 543 0. 650 0. 408 0. 123		3)150ga1 0. 63 1. 68 1. 70 2. 76 2. 05 8. 82	3)200ga l 1.42 1.98 2.01 0.86 3.03 0.84 0.68 0.68 2.79 14.29 中 Dcy (cm)	3350gal 1.94 2.06 2.14 1.10 3.04 1.11 1.30 1.34 0.96 3.24 18.23	<mark>AU−s</mark> AU−c	0.171 0.164 0.109 0.109 1.000 各 0.164 0.171	(4)200gal 0.165 0.171 0.165 0.358 0.109 0.357 0.736 0.703 1.000 層の身平地 0.165 0.171	0. 171 0. 164 0. 164 0. 355 0. 109 0. 352 0. 702 0. 700 1. 000	平均低減率 β
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 29 19.30 Dc 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 1. 1. 0 1. 1. 0 1. 1. 0 1. 1. 0 1. 1. 0 1.	0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 1. 210 1. 213 1. 515 0. 833	①200gal 0.729 0.500 0.513 0.778 0.437 0.791 2.049 2.156 2.253 2.344 2.424 2.508 2.575 0.909 0.912 1.148 0.628 計評価	0. 416 0. 416 0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520 0. 649 0. 357	PL	②150gal 0. 269 1. 837 1. 629 1. 954 5. 69 高い	②200gal 2.404 2.756 2.500 1.829 2.635 1.343 0.122 0.075 13.66 高い	3. 937 3. 634 4. 600 3. 512 3. 543 0. 650 0. 408 0. 123		3150gal 0.63 1.68 1.70 2.76 2.05 8.82 小	3)200ga1 1.42 1.98 2.01 0.86 3.03 0.84 0.68 0.68 2.79 14.29	3350gal 1.94 2.06 2.14 1.10 3.04 1.11 1.30 1.34 0.96 3.24 18.23	AU-s	0.171 0.164 0.109 0.109 1.000 各 0.164 0.171 0.164	(4)200gal 0.165 0.171 0.165 0.358 0.109 0.357 0.736 0.703 1.000 層の身平地 0.165 0.171 0.165	0. 164 0. 164 0. 355 0. 109 0. 352 0. 732 0. 700 1. 000 1. 000 5値 0. 164 0. 171 0. 164	0~0.25 極小位
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 29 19.30 Dc 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 1. 1. 0 1. 1. 0 1. 1. 0 1. 1. 0 1. 1. 0 1.	0. 970 0. 970 0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 3. 434 1. 210 1. 213 1. 515 0. 833	①200gal 0.729 0.500 0.513 0.778 0.437 0.791 2.049 2.156 2.253 2.344 2.424 2.508 2.575 0.909 0.912 1.148 0.628 計評価	0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520 0. 649 0. 357	PL	②150gal 0. 269 1. 837 1. 629 1. 954 5. 69 高い た険 PL=0 0 < PL≦5	②200gal 2.404 2.756 2.500 1.829 2.635 1.343 0.122 0.075 13.66 高い 度 PL かなり低い	3. 937 3. 634 4. 600 3. 512 3. 543 0. 650 0. 408 0. 123		3150gal 0.63 1.68 1.70 2.76 2.05 8.82 小 沈下量 0 0~5	3)200ga l 1.42 1.98 2.01 0.86 3.03 0.84 0.68 0.68 2.79 14.29 中 Dcy (cm)	3350gal 1.94 2.06 2.14 1.10 3.04 1.11 1.30 1.34 0.96 3.24 18.23	AU-s AU-c AM-s AM-p2	0.171 0.164 0.109 0.109 1.000 各 0.164 0.171 0.164 0.109	(4)200gal 0.165 0.171 0.165 0.358 0.109 0.357 0.736 0.703 1.000 層の身平地 0.165 0.171 0.165 0.234	0. 171 0. 164 0. 355 0. 109 0. 355 0. 109 0. 352 0. 700 1. 000 1. 000 1. 000 5値 0. 164 0. 171 0. 164 0. 232	0~0.25 極小位 0.25~0.5 小位
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 29 19.30 Dc 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 1. 1. 0 1. 1. 0 1. 1. 0 1. 1. 0 1. 1. 0 1.	0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 1. 210 1. 213 1. 515 0. 833	①200gal 0.729 0.500 0.513 0.778 0.437 0.791 2.049 2.156 2.253 2.344 2.424 2.508 2.575 0.909 0.912 1.148 0.628 計評価	0. 416 0. 416 0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520 0. 649 0. 357	PL	②150gal 0. 269 1. 837 1. 629 1. 954 5. 69 高い PL=0 0 < PL≦5 5 < PL≦15	②200gal 2. 404 2. 756 2. 500 1. 829 2. 635 1. 343 0. 122 0. 075 13. 66 高い 度 PL かなり低い 高い	3. 937 3. 634 4. 600 3. 512 3. 543 0. 650 0. 408 0. 123		3150gal 0.63 1.68 1.70 2.76 2.05 8.82 小 沈下量 0 0~5 5~10	③200gal 1.42 1.98 2.01 0.86 3.03 0.84 0.68 2.79 14.29 中	3350gal 1.94 2.06 2.14 1.10 3.04 1.11 1.30 1.34 0.96 3.24 18.23	AU-s AU-c AM-s	0.171 0.164 0.109 1.000 各 0.164 0.171 0.164 0.109 -	 ④200gal 0. 165 0. 171 0. 165 0. 358 0. 109 0. 357 0. 736 0. 703 1. 000 層のβ平地 0. 165 0. 171 0. 165 0. 234 0. 357 	0. 164 0. 164 0. 355 0. 109 0. 352 0. 732 0. 700 1. 000 1. 000 5値 0. 164 0. 171 0. 164	0~0.25 極小位 0.25~0.5 小位 0.5~1.0 中位
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 25 19.30 Dc 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 1. 1. 0 1. 1. 0 1. 1. 0 1. 1. 0 1. 1. 0 1.	0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 1. 210 1. 213 1. 515 0. 833	①200gal 0.729 0.500 0.513 0.778 0.437 0.791 2.049 2.156 2.253 2.344 2.424 2.508 2.575 0.909 0.912 1.148 0.628 計評価	0. 416 0. 416 0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520 0. 649 0. 357	PL	②150gal 0. 269 1. 837 1. 629 1. 954 5. 69 高い PL=0 0 < PL≦5 5 < PL≦15	②200gal 2.404 2.756 2.500 1.829 2.635 1.343 0.122 0.075 13.66 高い 度 PL かなり低い	3. 937 3. 634 4. 600 3. 512 3. 543 0. 650 0. 408 0. 123		3150gal 0.63 1.68 1.70 2.76 2.05 8.82 小 沈下量 0 0~5 5~10 10~20	3)200ga l 1. 42 1. 98 2. 01 0. 86 3. 03 0. 84 0. 68 0. 68 2. 79 14. 29 中 Dcy (cm) なし 軽微 小 中	3350gal 1.94 2.06 2.14 1.10 3.04 1.11 1.30 1.34 0.96 3.24 18.23	AU-s AU-c AM-s AM-p2	0.171 0.164 0.109 0.109 1.000 各 0.164 0.171 0.164 0.109	(4)200gal 0.165 0.171 0.165 0.358 0.109 0.357 0.736 0.703 1.000 層の身平地 0.165 0.171 0.165 0.234	0. 171 0. 164 0. 355 0. 109 0. 352 0. 700 1. 000 1. 000 1. 000 5値 0. 164 0. 171 0. 164 0. 232	0~0.25 極小位 0.25~0.5 小位
深さ(m) 土質記号 実 1.31 AU-s 1 2.30 AU-p1 7 3.30 AU-p1 1 4.30 AU-p2 10 5.33 AU-c 3 6.33 AM-s 1 7.30 AM-p2 5 8.30 AM-p2 3 9.31 AM-c 5 10.31 AL-s 2 11.30 AL-s 6 12.30 AL-s 4 13.30 AL-s 8 14.30 AL-s 8 14.30 AL-s 3 15.30 AL-s 3 16.30 Dc 4 17.30 Dc 1 18.30 Dc 25 19.30 Dc 3	1. 0 7. 0 7. 0 0. 0 3. 4 1. 7 5. 0 3. 0 5. 6 2. 8 6. 0 4. 0 8. 0 1. 1. 0 1. 1. 0 1. 1. 0 1. 1. 0 1. 1. 0 1.	0. 667 0. 683 1. 033 0. 583 1. 046 2. 731 2. 875 3. 005 3. 125 3. 232 3. 344 1. 210 1. 213 1. 515 0. 833	①200gal 0.729 0.500 0.513 0.778 0.437 0.791 2.049 2.156 2.253 2.344 2.424 2.508 2.575 0.909 0.912 1.148 0.628 計評価	0. 416 0. 416 0. 416 0. 286 0. 293 0. 443 0. 250 0. 448 1. 171 1. 232 1. 288 1. 339 1. 385 1. 433 1. 472 0. 518 0. 520 0. 649 0. 357	PL	②150gal 0. 269 1. 837 1. 629 1. 954 5. 69 高い PL=0 0 < PL≦5 5 < PL≦15	②200gal 2. 404 2. 756 2. 500 1. 829 2. 635 1. 343 0. 122 0. 075 13. 66 高い 度 PL かなり低い 高い	3. 937 3. 634 4. 600 3. 512 3. 543 0. 650 0. 408 0. 123		3150gal 0.63 1.68 1.70 2.76 2.05 8.82 小 沈下量 0 0~5 5~10	③200gal 1.42 1.98 2.01 0.86 3.03 0.84 0.68 2.79 14.29 中	3350gal 1.94 2.06 2.14 1.10 3.04 1.11 1.30 1.34 0.96 3.24 18.23	AU-s AU-c AM-s AM-p2 AM-c	0.171 0.164 0.109 1.000 各 0.164 0.171 0.164 0.109 -	 ④200gal 0. 165 0. 171 0. 165 0. 358 0. 109 0. 357 0. 736 0. 703 1. 000 層のβ平地 0. 165 0. 171 0. 165 0. 234 0. 357 	0. 171 0. 164 0. 355 0. 109 0. 352 0. 700 1. 000 1. 000 1. 000 1. 000 1. 0164 0. 171 0. 164 0. 232 0. 352	0~0.25 極小位 0.25~0.5 小位 0.5~1.0 中位

液状化FL計算結果_上載荷重

液环1CFL計算結果_工取何里 Hp=3.2m	上載荷重q= 57.6	S kN/m ²												
Br-3	上戰·阿里(4- 57. €			危険度⊿PL	1		э ф-	下量 ∆ Dcy(cm)	1	水平地般	支力係数の(毛浦区粉 Q	İ
深さ(m) 土質記号 実測N値	①150gal ①200gal		②150gal					③200gal				4)200gal		
1.33 AU-c 0.9	(1) 100ga 1 (1) 200ga 1	1)000ga1	<u>2</u> 730ga1	Z/LUUga i	3 000ga1		O TOUGUT	3/200ga1	Joodgai		- Tooga1	- Zooga i	 7000ga1	
2. 33 AU-p1 0. 0			ŭ											
3. 33 AU-p1 0. 0	1. 147	0. 656			2. 627				1. 47				0. 202	
4. 33 AU-p2 0. 0										1				
5. 30 AU-s 8. 0	1. 403 1. 053	0. 601			2. 783				1. 47				0. 214	
6. 30 AU-s 13. 0	1. 846 1. 385	0. 791			1. 001				0.84				0. 359	
7. 33 AM -p1 0. 9														
8. 30 AM-s 4. 0														
9. 30 AM-s 7. 0	1. 320 0. 990	0. 566		0. 028	1. 231			0.00	1.46			0. 232	0. 232	
10. 30 AL-g 19. 0	1. 168 0. 876	0.500		0. 693	2. 786			1.01	1. 90	ı		0. 421	0. 421	
11. 30 AL-g 19. 0	1. 255 0. 942	0. 538		0. 254	2. 009			0. 66	1.63			0. 507	0. 507 1. 000	
12. 30 AL-g 27. 0 13. 30 AL-g 29. 0	2. 180 1. 635 2. 478 1. 858	0. 934 1. 062			0. 253				0. 64				1.000	
14. 30 Dc 12. 0	1. 398	0. 799			0. 315				0. 81	•			1. 000	
15. 30 Dc 15. 0	0. 664	0. 380		0. 946	1. 749			3. 38	3. 90			0. 161	0. 161	
16. 30 Ds 11. 0	1. 236 0. 927	0. 530		0. 108	0. 696			0.79	1.82			0. 435	0. 435	
17. 30 Dc 18. 0	1. 854	1.059		0.100	0.000			0.70				0. 100	000	
18. 30 Ds 11. 0	1. 247 0. 935	0. 534		0. 055	0. 396			0. 79	1.86	1		0. 417	0. 417	
19. 30 Dc 5. 0	1. 091	0. 624			0. 171				1. 34				0.604	
20. 30 Dc 2. 0														
	計		PL 0	2. 08	16.02	Dcy	0	6. 63	19. 14		么	層のβ平均	値	
	評価		かなり低い	低い	かなり高い	50,	なし	小	中					
	5± 15 11 = 101 =			- 5	1			D / \	i	AU-p1	_	-	0. 202	- 14 16 15 A
	液状化の判定	[危険!					Dcy(cm)		AU-s	-	- 000	0. 287	平均低減率β
		化する		かなり低い			0	なし		AM-s	_	0. 232	0. 232	0~0.25 極小位
	FL>1.0 液状化	としない	0 <pl≦5 5<pl≦15< td=""><td></td><td></td><td></td><td>0~5 5~10</td><td><u>軽微</u> 小</td><td></td><td>AL-g</td><td>_</td><td>0. 464 0. 161</td><td>0. 643 0. 588</td><td>0.25~0.5 小位 0.5~1.0 中位</td></pl≦15<></pl≦5 				0~5 5~10	<u>軽微</u> 小		AL-g	_	0. 464 0. 161	0. 643 0. 588	0.25~0.5 小位 0.5~1.0 中位
				かなり高い			10~20	中		Dc Ds	_	0. 101	0. 426	1.0 大位
			10 < 12	かなり向い			20~40	<u></u> 大		บง		0.420	0. 420	1.0 人位
							40~	甚大						
Hp=2.8m	上載荷重q= 50.4	∤kN/m²					10	EA						
Br-4	液状化抵抗率		1	危険度⊿PL			沈二	下量 ∆ Dcy(cm)	1	水平地盤	支力係数の値	氏減係数 R	
深さ(m) 土質記号 実測N値			②150gal					③200gal				4)200gal		
1. 31 AU-s 1. 0	1. 245 0. 933	0. 533	<u> </u>	0. 592	4. 145		© 1008u.	1. 24	2. 49		<u> </u>	0.114	0.114	
2. 30 AU-p1 7. 0														
3. 30 AU-p1 17. 0										1				
4. 30 AU-p2 10. 0														
5. 33 AU-c 3. 4	1. 099 0. 824			0. 970				1. 24				0. 171		
6. 33 AM-s 1. 7	0. 977 0. 732	0. 419	0. 120	1. 375	2. 987		0. 90	1.89	2. 57		0. 133	0. 133	0. 133	
7. 30 AM-p2 5. 0	1. 366 1. 024		0.000	4 045			4 70	0.01			0.400	0.400		
8. 30 AM-p2 3. 0	0.865 0.648		0. 633				1. 78				0. 109	0. 109		
9. 31 AM-c 5. 6	1. 241 0. 930	0.000		0. 446	0.251			0. 64	0.62			0. 262	1 000	
10. 31 AL-s 2. 8 11. 30 AL-s 6. 0	2. 164 1. 623 1. 777 1. 333	0. 928 0. 762			0. 351 1. 036				0. 63 0. 81				1. 000 1. 000	
12. 30 AL-s 4. 0	3. 887 2. 915	1. 666			1.000				0.01				1.000	
13. 30 AL-s 8. 0	3. 945 2. 959	1. 691												
14. 30 AL-s 24. 0	4. 004 3. 003	1. 716								1				
15. 30 AL-s 39. 0	4. 072 3. 054	1. 745												
16. 30 Dc 41. 0	3. 231 2. 423													
17. 30 Dc 11. 0	1. 400 1. 050									I				
18. 30 Dc 29. 0	1. 397 1. 048													
19. 30 Dc 36. 0	1. 570 1. 177													
20. 30 Dc 29. 0	0. 906 0. 679		0.75	F 00	0 50		2. 16	3. 15	0.50		1.000	1. 000		
	計		PL 0. 75	5. 03	8.52	Dcy	4. 84	10. 77	6. 50		各	層のβ平均	値	
	評価		低い	高い	高い	ــــــــــــــــــــــــــــــــــــــ	軽微	中	小	All		-		
	液状化の判定	, []	危険!	 DI □			沖下早	Dcy (cm)	İ	AU-s AU-c		0. 114 0. 171	0. 114 –	平均低減率 β
	液状化の判別 FL≦1.0 液状	E FL 化する		_{旻 PL} かなり低い			<u> </u>	DCy (clii) なし		AU-C		0.171	0. 133	0~0.25 極小位
		としない	0 <pl≦5< td=""><td></td><td></td><td></td><td>0~5</td><td>軽微</td><td></td><td>AM-p2</td><td></td><td>0. 133</td><td>U. 133 -</td><td>0~0.25~0.5 小位</td></pl≦5<>				0~5	軽微		AM-p2		0. 133	U. 133 -	0~0.25~0.5 小位
	1. L > 1. V / / / / / / / /		5 <pl≦15< td=""><td></td><td></td><td></td><td>5~10</td><td>小八</td><td></td><td>AM-c</td><td></td><td>0. 103</td><td>_</td><td>0.5~1.0 中位</td></pl≦15<>				5~10	小八		AM-c		0. 103	_	0.5~1.0 中位
				かなり高い			10~20	中		AL-s	_	-	1.000	1.0 大位
					ı		20~40	大		Dc	1.000	1. 000	-	, , jack
							20 70			DU	1.000	1.000		
							40~	甚大		DO	1. 000 –	1.000 –	_	

(2) 現況地盤の液状化解析結果(軟弱地盤対策工指針(H24))

1) 盛土荷重毎の液状化判定結果

造成盛土前後の液状化抵抗率 FL 値と PL 値を算定し、造成盛土の液状化への効果を把握した。 以下に、解析条件を示した。

・地震動: kh=0.25 (「宅地防災マニュアルに準ずる」

・盛土荷重:盛土荷重を見込まない自然地盤と、造成盛土荷重を考慮した液状化解析を行った。

校舎側 Br-3: 盛土荷重(完成盛土高 Hp=3.2m) $=3.2\times18=57.6$ kN/m^2 グランド側 Br-: 盛土荷重(完成盛土高 Hp=2.8m) $=2.8\times18=50.4$ kN/m^2

液状化解析結果の詳細は巻末に示し、表-6.3.15にまとめ、表-6.3.14に一覧表を示した。 一般に、盛土荷重がある場合のFL値は、盛土荷重がない場合と比較し増加する。

校舎側 Br-3 で、盛土荷重がない場合とある場合を比較すると、盛土荷重がある場合は液状化が生ずる層の FL 値は増加するが、下部沖積層の FL 値が減少し、その上部の一部に FL<1.0 となり液状化層となった。危険度は、「かなり高い」 \rightarrow 「高い」にランクが下がり盛土荷重の効果と判断される。

同様に、グランド側 Br-4 で、盛土荷重がある場合は液状化が生ずる層の FL 値は増加するが、下部沖積層の FL 値が減少し、その上部の一部に FL<1.0 となり液状化層となった。危険度は、「高い」のランクは変わらないが、PL 値は下がり盛土荷重の効果と判断される。

地震動 (kh=0.25) 解析 位置 項目 考 備 箇所 自然地盤 盛土荷重を考慮 FL≦1.0 は 5 点で、 FL ≦ 1.0 は 6 点 上部・中部沖積層の FL 上部・中部沖積層が で、上部・中部沖 値は増加したが、下部沖 FL 値 対象 積層と下部沖積の 積層の FL 値は減少 Br-3 一部が対象 液状化対象層が増加 PL=16.6 で液状化の PL=13.3 で液状化 上載荷重により、危険度 PL 値 の危険度は高い 危険度はかなり高い のランクが低下 FL≦1.0 は 3 点で、 凡≦1.0 は 4 点 上部・中部沖積層の FL 値は増加したが、下部沖 グ 上部・中部沖積層が で、上部・中部沖 FL 値 積層と下部沖積の ラ 積層の FL 値は減少 対象 ン 一部が対象 液状化対象層が増加 Br-4K PL=11.5 で液状化の PL=9.5 で液状化 上載荷重により、危険度 側 危険度は高い の危険度は高い のランクは同じである PL 値

表-6.3.14 現況地盤液状化解析結果一覧表 (軟弱地盤対策工指針 (H24))

ここに、FL 値: 液状化の安全率 PL 値: 危険度の指標

注1) 液状化抵抗率 FL: 地盤内の深さ毎に液状化の可能性を判定したもの。FL 値≦1 の場合、液状化の可能性がある。

が、PL値は低下

- 注2) 液状化危険度 PL 値:各土層の液状化抵抗率 (FL 値)を深さ方向に重みをつけて足し合わせた値。
- 参考) 東北地方太平洋沖地震で、宮城県が美里町北浦に設置した地震計の3成分合成最大加速度は 959.4gal

表-6.3.15 盛土荷重考慮有無の地盤液状化検討結果一覧表(軟弱地盤対策工指針(H24))

			E	3r-3_Hp=3.2m	_		
Br−3 (kh	n=0. 25, SW-	4に適用)	液状化排	f抗率 FL		危険	度⊿PL
深さ(m)	土質記号	実測N値	q=0kN/m2	q=57.6kN/m2		q=0kN/m2	q=57.6kN/m2
1. 33	AU-c	0.9					
2. 33	AU-p1	0					
3. 33	AU-p1	0					
4. 33	AU-p2	0	0. 197	0. 412		6. 984	5. 113
5. 30	AU-s	8. 0	0. 404	0. 612		4. 165	2. 709
6. 30	AU-s	13.0	0. 635	0. 710		1. 753	1. 393
7. 33	AM-p1	0.9					
8. 30	AM-s	4. 0	0. 327	0. 459		2. 164	1. 740
9. 30	AM-s	7. 0	0. 474	0. 618		1. 492	1. 082
10.30	AL-g	19.0	1. 167	0. 766			1. 308
11.30	AL-g	19.0	3. 256	1.011			
12. 30	AL-g	27. 0	19. 567	3. 463			
13. 30	AL-g	29. 0	40. 528	7. 662			
14. 30	Dc	12. 0					
15. 30	Dc	15. 0					
16. 30	Ds	11.0					
17. 30	Dc	18.0					
18. 30	Ds	11.0					
19. 30	Dc	5. 0					
20. 30	Dc	2.0					
				+	PL	16. 6	13. 3
			評	価		かなり高い	高い

			E	3r-4_Hp=2.8m			
Br-4 (kh=0). 25, Br−2, S	₩-9に適用)	液状化排	氐抗率 FL		危険	度⊿PL
深さ(m)	土質記号	実測N値	q=0kN/m2	q=50.4kN/m2		q=0kN/m2	q=50.4kN/m2
1. 31	AU-s	1.0	0. 416	0. 507		5. 184	4. 379
2. 30	AU-p1	7. 0					
3. 30	AU-p1	17. 0	0. 366	0. 553		2. 910	2. 051
4. 30	AU-p2	10.0					
5. 33	AU-c	3.4					
6. 33	AM-s	1.7	0. 331	0. 439		3. 435	2. 884
7. 30	AM-p2	5.0					
8. 30	AM-p2	3.0					
9. 31	AM-c	5.6		1 110			
10.31	AL-s	2.8	5. 756	1.416			
11. 30	AL-s	6.0	4. 268	1. 264			
12. 30	AL-s	4.0	3. 550	1. 214			0.100
13. 30	AL-s	8.0	1. 768	0. 958			0. 138
14. 30	AL-s	24. 0	2227. 000	731. 038			
15. 30	AL-s	39.0	614. 978	198. 146			
16. 30 17. 30	Dc Dc	41. 0 11. 0					
18. 30	DC DC						
19. 30	DC DC	29. 0 36. 0					
20. 30	Do	29. 0					
20. 30	DC	Z3. U		<u> </u>		11.5	9.5
				·価	PL	高い	9.5 高い

液状化の判定 FL	危険度 PL
FL≦1.0 液状化する	PL=0 かなり低い
FL>1.0 液状化しない	0 <pl≦5 th="" 低い<=""></pl≦5>
	5 <pl≦15 th="" 高い<=""></pl≦15>
	15 <pl th="" かなり高い<=""></pl>

2) 現況地盤における液状化時の盛土の安定解析結果

液状化抵抗率 FL と過剰間隙水圧比 Δ u $/\sigma$ $^{'}$ v の関係(表-6.3.16 を参照)から、過剰間隙水圧比を推定する。

表-6.3.16 液状化抵抗値と過剰間隙水圧比の関係※

液状化抵抗率 FL	過剰間隙水圧比 $\alpha = \Delta u / \sigma' v$
0.6	1
0.6∼ 0.89	0. 9
0.89~ 0.96	0.7
0.96~ 1.1	0.5
1.1~ 1.45	0.3
1.45~ 2.2	0. 1
2.2	0

各箇所の液状化抵抗率 FL から過剰間隙水圧比 $\Delta u/\sigma$ v を求め、盛土荷重がない場合と盛土荷重を考慮した各層の過剰間隙水圧比を表-6.3.17 に示した。

表-6.3.17 液状化抵抗率と過剰間隙水圧比

±+ ∧ /m/		抵抗率	過剰歓	迎水圧比	13 m . 10 mil	液状化	· ·	過剰歓迎水圧比		
校舎側	平」	均 FL		α	グランド側	平均) FL	(α	
Br-3	q=0	q=57.6	q=0	q=57.6	Br-4	q=0	q=50.4	q=0	q=50.4	
	$\mathrm{kN/m^2}$	$\mathrm{kN/m^2}$	kN/m^2	kN/m^2		$\mathrm{kN/m^2}$	kN/m^2	kN/m^2	$\mathrm{kN/m^2}$	
AU-c					AU-s	0.416	0.507	1.0	1.0	
AU-p1					AU-p1	0.366	0. 553	1.0	1.0	
AU-p2	0.301	0.512	1. 0	1.0	AU-p2					
AU-s	0.520	0.661	1.0	0.9	AU-c					
AM-p1					AM-s	0.331	0. 439	1.0	1.0	
AM-s	0.401	0. 539	1.0	1.0	AM-p2					
AL-g	16. 130	3. 226	0	0	AM-c					
Dc					AL-s	476	156	0	0	
Ds					Dc					

q=0:上載荷重(造成盛土)なし

q =57.6 kN/m² : Br-3 完成盛土 Hp=3.2m

q =50.4 kN/m² : Br-4 完成盛土 Hp=2.8m

液状化時における盛土の安定解析に際し、液状化判定されている校舎側 Sr-3 とグランド側 Br-4 の過剰間隙水圧比を以下のように振り分けた。

【校舎側】

 $Br-3 \rightarrow SW-4$

【グランド側】

 $Br-4 \rightarrow Br-2$, SW-9

液状化時の盛土の安定解析結果を図-6.3.10に示し、表-6.3.18にまとめた。

校舎側 SW-4 とグランド側 Br-2 では、液状化時でも許容安全率 Fsa=1.00 を上回り、盛土は安定である。

^{※ 「}道路土工 軟弱地盤対策工指針 (H24)」(財)日本道路協会

グランド側 SW-9 と連絡道路側 SW-9 は許容安全率 Fsa=1.00 を下回った。 これは、Br-4 の地質構成や試験結果,SW-9 の土質構成が要因と考えられる。

表-6.3.18 現況地盤における液状化時に対する安定解析結果

位置	解析 箇所	供用時 (Fsa=1.0	安全率 10) と判定	備考
校舎側	SW-4	1. 178	ОК	
グラン	Br-2	1. 786	ОК	
ド側	SW-9	0. 905	NG	
連絡道路側	SW-9	0. 935	NG	

注 1) 供用時 液状化時許容安全率: Fs=1.0

注2) 赤数字は、許容値を満足していないケース

図-6.3.10 現況地盤における液状化時の安定解析結果

盛土載荷重工法(プレロード工)を用いた2段階施工では、施工時および供用後に必要安全率を満足しない ため、地盤破壊に対して何らかの対策が必要となる。

表-63	19	盛土載荷重工法による沈下-時間-安全率総括表
10.0		二二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二

広 栗	紹北が元	残留沈下量	施工時	供用時安全率					
位置	解析箇所	10cm 必要日数	安全率	常時	地震時	地震・液状化時			
校舎側	SW-4	421 日	0. 911	1. 294	0.818	1. 178			
グラウ	Br-2	233 日	1. 198	1. 786	0.845	1. 786			
ンド側	SW-9	124 日	1.022	1. 361	0. 752	0. 905			
連絡道 路側	SW-9	124 日	1.056	1. 444	0.845	0. 935			

- 注1) 施工時必要安全率: F s = 1.1
- 注2) 供用時・常時必要安全率: F s = 1.5
- 注3) 供用時・地震時・液状化時必要安全率: F s = 1.0
- 注4) 赤文字は、必要安全率を満足していないケース

【校舎側】

SW-4



図-6.3.11 施工時・供用時の盛土高-沈下量-時間と安全率(校舎側:SW-4)

【グランド側】

Br-2

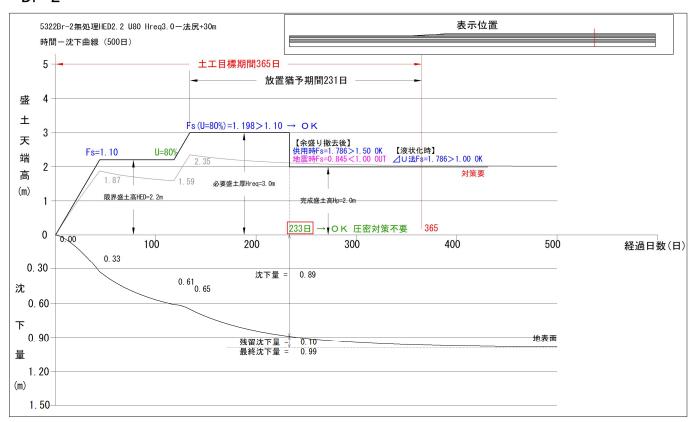
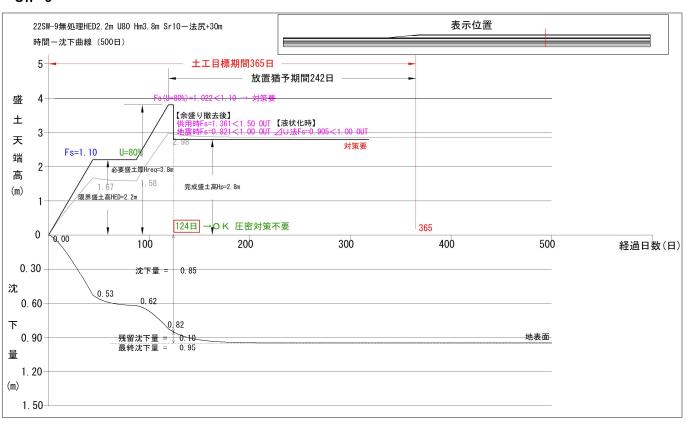
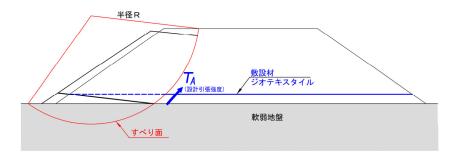


図-6.3.12 施工時・供用時の盛土高一沈下量一時間と安全率(グランド側: Br-2)

SW-9

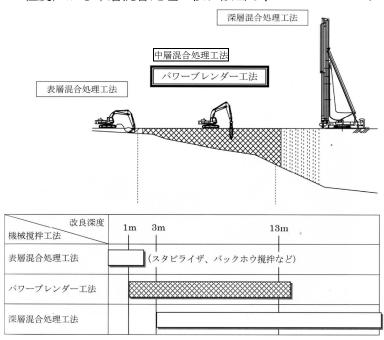



図-6.3.13 施工時・供用時の盛土高-沈下量-時間と安全率(グランド側:SW-9)

6-4. 対策工法の選定

現地盤の解析の結果、施工時および供用時の盛土の安定が確保できない結果となったため、安定対策目的とした、対策工を選定する。なお、沈下については、安定対策で必要盛土厚 Hreq が立ち上げることができれば、問題ないため対策は不要である。

安定を目的とした対策工のうち、計画盛土高と軟弱地盤の分布深度,施工実績や施工費用から、表層処理工法の「**敷設材工法」**と、化学的固結工法の「**深層混合処理工法」**の2案について比較する。


・敷設材工法:盛土の基礎地盤を通る円弧すべりの安定を目的とした補強工法で、一般的に「ジオテキスタイル工法」と呼ばれる。

出典:「パラリンク敷網工法 技術資料」 エターナルプレザーブ (株) より抜粋・一部加筆・修正

図-6.4.1 敷設材工法 (ジオテキスタイル工法) による安定対策検討の概念図

・深層混合処理工法:改良深度は、表層 (GL-2m 以下),浅層 (GL-3m 以下)と中層 (GL-13m 以下) および深層 (GL-13m 以上)に分けられ、本業務地では、軟弱地盤の分布深度 (GL-10~11m 程度)から中層混合処理工法に該当し、「パワーブレンダー工法」とも呼ばれる。

出典:「パワーブレンダー工法」 パワーブレンダー工法協会資料より抜粋・一部加筆

図-6.4.2 深層層混合処理工法(中層混合処理工法,パワーブレンダー工法)と改良深度

- 135 -

表-6.4.1 軟弱地盤対策工法の選定表

「軟弱地盤技術指針(案)」(住宅・都市整備公団、昭和59年1月) ◎特に有効 ○有効 △有効性はある

工法区分					対	策工	策工の目的				適応土質		756	果	施				
		,		沈	沈下		安 定			地心工具		д	200	*	加工時				
大分頬	小分類	工 法 鋭 明	使用材料	沈下促進	全沈下量減少		強度增加促進	すべり抵抗付与		砂 粒 土	細粒土	高有機質土	速効性	遅効性	の地盤の乱れ	周囲への影響及びその他			
表層処理工法	表層排水工法	トレンチをフィルタ材で埋戻し盲排水溝とするか、有 乳管をフィルタ材で保護して埋没するかして表面水を 排除し表層地盤を改良する。	碟・砕石・ 有孔管			0	Δ				0	0	Δ		小	重機の施工性を良くする。 敷砂工法は圧密促進を図る 工法と併用して適用される。			
	敷砂工法 (サンド マット工法)	地表面に透水性の良い砂を敷ならして、重機のトラフ ィカビリティを良好にすると共に、軟弱層の上部排水 層とする。	透水性の良 好な砂	0		0	0				0	0		0	小	表層固結工法で石灰を現場 混合方式で用いる場合には スモーキング対策が必要と			
	敷設材工法 (シート・ネット 工法)	シート等の引張力を利用して重機のトラフィカビリティを増す。また、盛土荷重を均等に分散させて不同沈 下や側方変位を滅じる。	丸太・粗だ シート・ネ ット			0		0			0	0	0		小	なる。			
	表層固結工法	表層土に固化材を混合することにより地盤の圧縮性・ 強度特性を改良し、重機のトラフィカビリティを増す。	石灰・セメント		Δ	0		Δ			0		0		小				
置換工法	掘削置換工法	掘削機械を用いて軟弱層を部分的ないしは全面的に排 土し、良質材で埋戻す。	水浸に強い 置換材(岩 砕・砂礫な ど)		0	0		0	0	0	0	0	0		小	不良土の処理に注意が必要。			
	強制置換工法	盛土の自重により軟弱層の一部を押し出して盛土を沈 め、強制的に良質土と置き換える。			0	0		0			0	0	0		大	側方地盤の変形隆起が遠方 にまで及ぶ。			
載荷重工法	盛土荷重載荷工法 (サーチャージ・ プレロード工法)	設計荷重以上の載荷を土重にて行い、計画荷重による 沈下を早期に達成する。	盛土材	0			0				0	0		0	中	地盤変状に対する注意が必 要。			
	地下水位低下工法	地盤中の地下水位を低下させることにより有効応力を 増加させ、圧密沈下を促進させる。	ウェルポイン ト・ディーブ ウェルなど	0		0	0			0	0	Δ		0	小	浅部で砂が厚く堆積する地盤で有利。地盤沈下の原因 となる場合がある。			
	大気圧載荷工法	地表面に敷砂を布設し、この上に気密シートを張って 真空ポンプで減圧して大気圧をかけ、地盤中の有効応 力を増す。	砂、バキュ ームポンプ など	0		0	0				0	Δ		0	小	地盤変状は殆んどない。漏気 防止が重要。バーチカルドレ ーンと併用すると効果が早い。			
バーチカルドレーン工法	サンドドレーン 工法	地盤中に砂柱を打設あるいは埋設し、排水距離を短縮 して圧密促進を図る。	透水性の良い砂	0			0				0	Δ		0	中	工法によっては打込み時の			
	袋詰めサンドド レーン工法	同上の目的達成のため、砂を透水網袋に詰めて砂柱を 設置する。	同上	0			0				0	Δ		0	中	打込み時の振動・騒音がある。			
	ペーパードレー ン工法	同上の目的達成のため、地盤中にケミカルペーパープ ラスチックボードを挿入する。	ボード類	0			0				0			0	小	工法によっては打込み時の 振動・騒音がある。排水の 連続性に難。			
\$265	サンドコンパクシ ョンパイル工法	地盤中に締固めた砂柱あるいは砂礫柱を振動・衝撃荷 重によって打設する。粘性土では柱効果と排水効果を 期待、砂質土では全体を締固める。	砂、砂礫	0	0		Δ	0	0	0	0	0	0		大	打込み時の振勅・騒音に注 意が必要。粘性土に適用し た場合地盤を一時的に乱す。			
締固め工法	振動締固め工法	棒状の振動機を地盤中に挿入して砂を補給しながら砂 地盤を締固める。	砂、砂碟		0	0			0	0			0		大	締固め時の振動・騒音に注 意が必要。			
	動圧密工法	地盤上にハンマを落下させて地盤を締固めると共に、 発生する過剰水を排水させてせん断強さの増加を期待 する。	砂		0	0			0	0			0		大	衝撃・振動・騒音が発生す る。粗粒の埋立土に対して 効果的。			
化学的固結工法	深層混合処理工法	セメント等の固化材を攪拌翼で軟弱土と混合して地盤 を固化させる。	セメントミ ルク、モル タルなど		0	0	0	0	0	0	0				大	地下水汚染の恐れがある。			
	生石灰パイル工法	地盤中に生石灰を柱状に打設して、生石灰の脱水効果 と膨張効果による地盤の固結化を期待する。	生石灰	0	0	0	0	0			0				小	施工法によっては振動・騒 音がある。地盤変状がある。			
	薬液注入工法	地盤にセメント系等の薬液を圧力注入し、強度増加や 不透水化を図る。	水ガラス系・ セメント系の 注入材		0	0	0			0	Δ		0		小	地下水汚染の恐れがある。			
押え盛土工法		盛土敷幅を拡げのり勾配を綴めると共に本体盛土重量 とバランスさせて、地盤破壊を防止する。破壊時の応 急対策として適する。	盛土材			0		0			0	0	0		小	用地の余裕が必要。			
載荷速度制御工法		地盤の圧密強度効果を期待し、盛土を段階的ないしは 等速度でゆっくり立ち上げる。	(時間)			Δ					0	0		0	小	他工法と併用する場合が多 い。			
構造物工法		盛土のり尻部に矢板や杭を打設して側方地盤の変位を 低減させると共に地盤破壊を抑制する。	矢板 既製杭			0		0					0		小	隣接地対策、応急対策など の特殊な場合に限定される。			

6-5-1. 地盤破壊(対策後地盤)

前章により対策工として選定された①敷設材工法(ジオテキスタイル工法)と②深層混合処理工法(中層混合処理工法,パワーブレンダー工法)について検討を行う。

(1) 敷設材工法(ジオテキスタイル工法)

敷設材工を適用する条件として、施工時において安全率 (表-6.3.1 参照) が $Fs \ge 1.00$ を満たす必要があり、表-6.5.1 に再掲載した。校舎側 SW-4 以外の箇所では、敷設材工法が適用可能である。

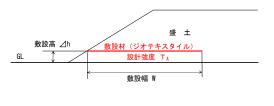


表-6.5.1 敷設材工法の適用判定

	解析	対策	1段階目	盛土	2段階目盛土					
位置	箇所	対象	限界盛土高 HED (m)			安全率 Fs	判定			
校舎側	SW-4	盛土補強	3. 2	80	4. 4	0. 911	ジオテキは 適用不可			
グランド側	Br-2	盛土補強	2.0	80	3. 0	1. 198	ジオテキは 適用可能			
ンド側	SW-9	盛土補強	2.8	80	3. 8	1. 022	ジオテキは 適用可能			
道路側	SW-9	盛土補強	2.8	80	3. 8	1. 056	ジオテキは 適用可能			

敷設材工法が適用可能なグランド側 Br-2, SW-9, 連絡道路側 SW-9 について、施工時と供用時(常時, 地震時)の安定性を検討し、図 $-6.5.1(1)\sim(3)$ に示し、表-6.5.2 にまとめた。

敷設材工法が可能な箇所は、<u>連絡道路側 SW-9 のみで、呼名 1000L (常時 TA=672kN/m, 地震時 TAE=840kN/m) × W40m を要す</u>結果となった。

表-6.5.2 敷設材工法の安定解析結果

	解析	対策対象	仕 様			(Fs1=				
位置	箇所		敷設幅 W(m)	常時 設計強度 (kN/m²)	地震時 設計強度 (kN/m²)	施工時 Fs1	供用時 Fs2	地震時 Fs3	判定	備考
校舎側	SW-4	盛土 補強	_	_	_	_	_		_	敷設材は不適
グラン	Br-2	盛土 補強	39. 5	672 ^{**}	840**	2. 666	4. 759	0. 912	NG	対策工不可
ド側	SW-9	盛土 補強	39. 5	672 ^{**}	840**	2. 700	3. 934	0. 961	NG	対策工不可
道路側	SW-9	盛土 補強	37. 0	672**	840*	2. 802	5. 862	1. 002	ок	呼名:1000L 定着長 3m

※:一般的に市販されている敷設材の設計強度Tの最大値 (パラリンク, 呼名 1000L)